首页 前端知识 视频目标语义分割自动标注——从图像轮廓提取到转成json标签文件

视频目标语义分割自动标注——从图像轮廓提取到转成json标签文件

2024-05-23 20:05:27 前端知识 前端哥 203 494 我要收藏

前言

语义分割数据标注是为训练语义分割模型准备数据的过程。语义分割是计算机视觉领域的任务,其中需要为图像中的每个像素分配一个类别标签,以区分不同的对象或区域。标注数据时,通常需要为每个对象或区域分配一个唯一的标签,并创建与图像像素相对应的分割掩码。掩码是二进制图像,其中像素值指示每个像素属于哪个类别。例如,对于背景、人、车辆等类别,分别创建不同的掩码。

手动标注工具:
图像标注软件:您可以使用专门的图像标注工具,如LabelImg、Labelbox、VGG Image Annotator (VIA)、CVAT等,来手动绘制区域并分配标签。
绘图工具:也可以使用一般绘图工具,如Adobe Photoshop或GIMP,手动绘制区域并创建掩码。

半自动标注工具:
GrabCut算法:这是一种基于交互式图像分割的方法,可以帮助快速生成分割掩码。
超像素分割工具:使用工具如SLIC或QuickShift可以生成超像素,然后手动分配标签给不同的超像素区域。

深度学习自动标注:
分割模型辅助标注:可以使用预训练的语义分割模型,如Mask R-CNN、U-Net等,来辅助标注。这些模型可以自动提供初始分割结果,然后可以进行必要的微调。

图像语义分割数据标注是一项费时费力的工作,特别是对视频中的目标进行语义分割标注时,要对视频进行拆帧之后对每一帧的里面所需要的目标进行标注,是一项繁琐又费时费力的工作。但随着Segment Anything与​Segment-and-Track Anything算法的出现,让分割标注任务不在那么麻烦,​Segment-and-Track Anything可以对视频里面的目标进行追踪之后,再分割,然后我们可以借助​Segment-and-Track Anything分割出来的mask自动生成标签文件。

一、​Segment-and-Track Anything目标追踪与目标分割

1.算法简介

Meta AI的SAM)模型展现了强大的图像分割能力,但在处理视频数据方面存在一些挑战。Segment-and-Track Anything是由SAM模型扩展而来,使其能够支持视频数据的分割和跟踪。这一创新使SAM不仅能够分割图像中的对象,还能够跟踪它们随时间的变化。这一功能的应用潜力广泛,涵盖了各种时空场景,包括但不限于街景、增强现实、细胞图像分析、动画制作和航拍视频。

在SAM-Track项目中,SAM模型在单卡上实现了强大的目标分割和跟踪能力。它具备处理大规模数据的潜力,能够同时追踪超过200个物体,为用户提供了卓越的视频编辑能力。
在这里插入图片描述

2.算法应用部署

算法应用与部署可以看我之前的博客 :​Segment-and-Track Anything——通用智能视频分割、目标追踪、编辑算法解读与源码部署

3.运动目标追踪与分割

首先对视频第一帧进行目标分割,然后使用Segment-and-Track Anything进行整个视频的目标追踪与分割。
在这里插入图片描述
分割之后的结果如下:
在这里插入图片描述

二、生成标签

1.语义分割标签格式

要生成语义分割的标签,要了解语义分割的json文件的格式,这里使用labelme标注json文件进行举例,标注的标签文件如下:

{
  "version": "0.2.4",
  "flags": {},
  "shapes": [
    {
      "label": "mat",
      "text": "",
      "points": [
        [
          234.0,
          248.0
        ],
        [
          229.0,
          246.0
        ],
        [
          207.0,
          247.0
        ]
      ],
      "group_id": null,
      "shape_type": "polygon",
      "flags": {}
    },
    {
      "label": "mat",
      "text": "",
      "points": [
        [
          237.0,
          245.0
        ],
        [
          236.0,
          249.0
        ],
        [
          237.0,
          250.0
        ],
        [
          237.0,
          260.0
        ],
        [
          239.0,
          268.0
        ]
      ],
      "group_id": null,
      "shape_type": "polygon",
      "flags": {}
    }
  ],
  "imagePath": "b (14).jpg",
  "imageData": null,
  "imageHeight": 518,
  "imageWidth": 500
}

2.轮廓提取与多边形拟合

要对轮廓进行提取,提取轮廓之后,要进行多边形拟合

def approx_PolyDP(cv_src):
    cv_gray = cv2.cvtColor(cv_src, cv2.COLOR_BGR2GRAY)
    cv_ret, cv_binary = cv2.threshold(cv_gray, 0, 255, cv2.THRESH_BINARY)
    contours, hierarchy = cv2.findContours(cv_binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    approxs = []
    for contour in contours:
        # 对轮廓进行多边形拟合
        # epsilon = 0.04 * cv2.arcLength(contour, True)
        approx = cv2.approxPolyDP(contour, 1, True)
        approxs.append(approx)

    return approxs

在这里插入图片描述

3.生成标签文件

多边形拟合之后,创建json文件

def create_node(label_name,points):
    shape = {
        "label": label_name,
        "text": "",
        "points":
           points
        ,
        "group_id": None,
        "shape_type": "polygon",
        "flags": {}
    }

    return shape

def create_json(img_name,img_w,img_h):
    name, _ = os.path.splitext(img_name)
    data = {
        "version": "0.2.4",
        "flags": {},
        "shapes": [
        ],
        "imagePath": img_name,
        "imageData": None,
        "imageHeight":img_h,
        "imageWidth": img_w
    }

    json_name = name + ".json"

    with open(json_name, "w") as json_file:
        json.dump(data, json_file, indent=4)

def add_shape(json_name,node):
    with open(json_name, "r") as json_file:
        data = json.load(json_file)

    data["shapes"].append(node)

    # 保存更新后的JSON数据
    with open(json_name, "w") as json_file:
        json.dump(data, json_file, indent=4)

def contour_to_json(img_name):
    cv_src = cv2.imread(img_name)
    approxs= approx_PolyDP(cv_src)
    height, width = cv_src.shape[:2]

    points_all = []
    if len(approxs) >= 1:
        for approx in approxs:
            points = []
            for i in range(len(approx)):
                points.append([int(approx[i][0][0]), int(approx[i][0][1])])
        #         j = i + 1
        #         if j == len(approx):
        #              j = 0
        #         cv2.line(cv_src, (approx[i][0][0], approx[i][0][1]),
        #                   (approx[j][0][0], approx[j][0][1]), (255, 0, 0), 1)
        #     points_all.append(points)
        #
        # cv2.namedWindow("src",0)
        # cv2.imshow("src",cv_src);
        # cv2.waitKey()

        create_json(img_name,width,height)

        nodes = []

        for p in points_all:
            node = create_node("foot",p)
            nodes.append(node)

        name, _ = os.path.splitext(img_name)
        json_name = name + ".json"
        # add_shape(json_name,nodes[0])
        for n in nodes:
            add_shape(json_name,n)

4.验证标签文件

使用标注工具,如labelme打开,效果如下,代表测试可以:
在这里插入图片描述

转载请注明出处或者链接地址:https://www.qianduange.cn//article/9216.html
评论
发布的文章

JQuery中的load()、$

2024-05-10 08:05:15

大家推荐的文章
会员中心 联系我 留言建议 回顶部
复制成功!