首页 前端知识 将labelme标注的人体姿态Json文件转成训练Yolov8-Pose的txt格式

将labelme标注的人体姿态Json文件转成训练Yolov8-Pose的txt格式

2024-05-14 23:05:29 前端知识 前端哥 933 661 我要收藏

最近在训练Yolov8-Pose时遇到一个问题,就是如何将自己使用labelme标注的Json文件转化成可用于Yolov8-Pose训练的txt文件。

具体代码有以下:

1、labelme2coco.py 将自己标注的人体姿态信息json文件格式合并转换成CoCo格式



import os
import json
import numpy as np
import glob
import shutil
np.random.seed(41)
import cv2

#0为背景
classname_to_id = {"person": 1}

class Lableme2CoCo:

    def __init__(self, splitDir=''):
        self.images = []
        self.annotations = []
        self.categories = []
        self.img_id = 0
        self.ann_id = 0
        self.splitDir = splitDir

    def save_coco_json(self, instance, save_path):
        json.dump(instance, open(save_path, 'w', encoding='utf-8'), ensure_ascii=False, indent=1)  # indent=2 更加美观显示

    # 由json文件构建COCO
    def to_coco(self, json_path_list):
        self._init_categories()
        for json_path in json_path_list:
            # print(type(json_path))
            obj = self.read_jsonfile(json_path)
            self.images.append(self._image(obj, json_path))

            shapes = obj['shapes']
            groupIds = []
            for shape in shapes:
                groupId = shape['group_id']
                groupIds.append(groupId)
            for i in set(groupIds):
                keyPoints = [0] * 51
                keyPointNum = 0
                bbox = []

                for shape in shapes:
                    if i != shape['group_id']:
                        continue
                    if shape['shape_type'] == "point":
                        labelNum = int(shape['label'])
                        keyPoints[labelNum * 3 + 0] = int(shape['points'][0][0] + 0.5)
                        keyPoints[labelNum * 3 + 1] = int(shape['points'][0][1] + 0.5)
                        keyPoints[labelNum * 3 + 2] = 2
                        keyPointNum += 1
                    if shape['shape_type'] == 'rectangle':
                        x0, y0, x1, y1 = shape['points'][0][0], shape['points'][0][1], \
                                         shape['points'][1][0], shape['points'][1][1]
                        xmin = min(x0, x1)
                        ymin = min(y0, y1)
                        xmax = max(x0, x1)
                        ymax = max(y0, y1)

                        bbox = [xmin, ymin, xmax - xmin, ymax - ymin]

                annotation = self._annotation(bbox, keyPoints, keyPointNum)
                self.annotations.append(annotation)
                self.ann_id += 1
            self.img_id += 1

            # for shape in shapes:
            #     label = shape['label']
            #     if label != 'person':
            #         continue
            #
            #     annotation = self._annotation(shape)
            #     self.annotations.append(annotation)
            #     self.ann_id += 1
            # self.img_id += 1
        instance = {}
        instance['info'] = 'spytensor created'
        instance['license'] = ['license']
        instance['images'] = self.images
        instance['annotations'] = self.annotations
        instance['categories'] = self.categories
        return instance

    # 构建类别
    def _init_categories(self):
        for k, v in classname_to_id.items():
            category = {}
            category['id'] = v
            category['name'] = k
            self.categories.append(category)

    # 构建COCO的image字段
    def _image(self, obj, jsonPath):
        image = {}
        # img_x = utils.img_b64_to_arr(obj['imageData'])
        # h, w = img_x.shape[:-1]
        jpgPath = jsonPath.replace('.json', '.jpg')
        jpgData = cv2.imread(jpgPath)
        h, w, _ = jpgData.shape

        image['height'] = h
        image['width'] = w
        image['id'] = self.img_id

        # image['file_name'] = os.path.basename(jsonPath).replace(".json", ".jpg")
        image['file_name'] = jpgPath.split(self.splitDir)[-1].replace('\\', '/')


        return image

    # 构建COCO的annotation字段
    def _annotation(self, bbox, keyPoints, keyNum):
        annotation = {}

        annotation['id'] = self.ann_id
        annotation['image_id'] = self.img_id
        annotation['category_id'] = 1
        # annotation['segmentation'] = [np.asarray(points).flatten().tolist()]
        annotation['segmentation'] = []
        annotation['bbox'] = bbox
        annotation['iscrowd'] = 0
        annotation['area'] = bbox[2] * bbox[3]
        annotation['keypoints'] = keyPoints
        annotation['num_keypoints'] = keyNum

        return annotation

    # 读取json文件,返回一个json对象
    def read_jsonfile(self, path):
        with open(path, "r", encoding='utf-8') as f:
            return json.load(f)

    # COCO的格式: [x1,y1,w,h] 对应COCO的bbox格式
    def _get_box(self, points):
        min_x = min_y = np.inf
        max_x = max_y = 0
        for x, y in points:
            min_x = min(min_x, x)
            min_y = min(min_y, y)
            max_x = max(max_x, x)
            max_y = max(max_y, y)
        return [min_x, min_y, max_x - min_x, max_y - min_y]


if __name__ == '__main__':

    labelme_path = r"G:\XRW\Data\selfjson"
    print(labelme_path)
    jsonName = labelme_path.split('\\')[-1]
    saved_coco_path = r"G:\XRW\Data\mycoco"
    print(saved_coco_path)
    #####################################
    # 这个一定要注意
    # 为了方便合入coco数据, 定义截断文件的文件夹与文件名字
    splitDirFlag = 'labelMePoint\\'
    ######################################

    # 创建文件
    if not os.path.exists("%s/annotations/"%saved_coco_path):
        os.makedirs("%s/annotations/"%saved_coco_path)
    json_list_path = glob.glob(os.path.join(labelme_path, '*.json'))

    train_path, val_path = json_list_path, ''
    # print(train_path)
    print("train_n:", len(train_path), 'val_n:', len(val_path))

    # 把训练集转化为COCO的json格式
    l2c_train = Lableme2CoCo(splitDirFlag)
    # print(train_path)
    train_instance = l2c_train.to_coco(train_path)
    l2c_train.save_coco_json(train_instance, '%s/annotations/%s.json'%(saved_coco_path, jsonName))


labelme_path:自己标注的json文件路径

saved_coco_path:生成的CoCo格式保存位置

运行代码得到

2、将生成的CoCo格式的Json文件转换成Yolov8-Pose格式的txt文件

utils.py

import glob
import os
import shutil
from pathlib import Path

import numpy as np
from PIL import ExifTags
from tqdm import tqdm

# Parameters
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng']  # acceptable image suffixes
vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv']  # acceptable video suffixes

# Get orientation exif tag
for orientation in ExifTags.TAGS.keys():
    if ExifTags.TAGS[orientation] == 'Orientation':
        break


def exif_size(img):
    # Returns exif-corrected PIL size
    s = img.size  # (width, height)
    try:
        rotation = dict(img._getexif().items())[orientation]
        if rotation in [6, 8]:  # rotation 270
            s = (s[1], s[0])
    except:
        pass

    return s


def split_rows_simple(file='../data/sm4/out.txt'):  # from utils import *; split_rows_simple()
    # splits one textfile into 3 smaller ones based upon train, test, val ratios
    with open(file) as f:
        lines = f.readlines()

    s = Path(file).suffix
    lines = sorted(list(filter(lambda x: len(x) > 0, lines)))
    i, j, k = split_indices(lines, train=0.9, test=0.1, validate=0.0)
    for k, v in {'train': i, 'test': j, 'val': k}.items():  # key, value pairs
        if v.any():
            new_file = file.replace(s, f'_{k}{s}')
            with open(new_file, 'w') as f:
                f.writelines([lines[i] for i in v])


def split_files(out_path, file_name, prefix_path=''):  # split training data
    file_name = list(filter(lambda x: len(x) > 0, file_name))
    file_name = sorted(file_name)
    i, j, k = split_indices(file_name, train=0.9, test=0.1, validate=0.0)
    datasets = {'train': i, 'test': j, 'val': k}
    for key, item in datasets.items():
        if item.any():
            with open(f'{out_path}_{key}.txt', 'a') as file:
                for i in item:
                    file.write('%s%s\n' % (prefix_path, file_name[i]))


def split_indices(x, train=0.9, test=0.1, validate=0.0, shuffle=True):  # split training data
    n = len(x)
    v = np.arange(n)
    if shuffle:
        np.random.shuffle(v)

    i = round(n * train)  # train
    j = round(n * test) + i  # test
    k = round(n * validate) + j  # validate
    return v[:i], v[i:j], v[j:k]  # return indices


def make_dirs(dir='new_dir/'):
    # Create folders
    dir = Path(dir)
    if dir.exists():
        shutil.rmtree(dir)  # delete dir
    for p in dir, dir / 'labels', dir / 'images':
        p.mkdir(parents=True, exist_ok=True)  # make dir
    return dir


def write_data_data(fname='data.data', nc=80):
    # write darknet *.data file
    lines = ['classes = %g\n' % nc,
             'train =../out/data_train.txt\n',
             'valid =../out/data_test.txt\n',
             'names =../out/data.names\n',
             'backup = backup/\n',
             'eval = coco\n']

    with open(fname, 'a') as f:
        f.writelines(lines)


def image_folder2file(folder='images/'):  # from utils import *; image_folder2file()
    # write a txt file listing all imaged in folder
    s = glob.glob(f'{folder}*.*')
    with open(f'{folder[:-1]}.txt', 'w') as file:
        for l in s:
            file.write(l + '\n')  # write image list


def add_coco_background(path='../data/sm4/', n=1000):  # from utils import *; add_coco_background()
    # add coco background to sm4 in outb.txt
    p = f'{path}background'
    if os.path.exists(p):
        shutil.rmtree(p)  # delete output folder
    os.makedirs(p)  # make new output folder

    # copy images
    for image in glob.glob('../coco/images/train2014/*.*')[:n]:
        os.system(f'cp {image} {p}')

    # add to outb.txt and make train, test.txt files
    f = f'{path}out.txt'
    fb = f'{path}outb.txt'
    os.system(f'cp {f} {fb}')
    with open(fb, 'a') as file:
        file.writelines(i + '\n' for i in glob.glob(f'{p}/*.*'))
    split_rows_simple(file=fb)


def create_single_class_dataset(path='../data/sm3'):  # from utils import *; create_single_class_dataset('../data/sm3/')
    # creates a single-class version of an existing dataset
    os.system(f'mkdir {path}_1cls')


def flatten_recursive_folders(path='../../Downloads/data/sm4/'):  # from utils import *; flatten_recursive_folders()
    # flattens nested folders in path/images and path/JSON into single folders
    idir, jdir = f'{path}images/', f'{path}json/'
    nidir, njdir = Path(f'{path}images_flat/'), Path(f'{path}json_flat/')
    n = 0

    # Create output folders
    for p in [nidir, njdir]:
        if os.path.exists(p):
            shutil.rmtree(p)  # delete output folder
        os.makedirs(p)  # make new output folder

    for parent, dirs, files in os.walk(idir):
        for f in tqdm(files, desc=parent):
            f = Path(f)
            stem, suffix = f.stem, f.suffix
            if suffix.lower()[1:] in img_formats:
                n += 1
                stem_new = '%g_' % n + stem
                image_new = nidir / (stem_new + suffix)  # converts all formats to *.jpg
                json_new = njdir / f'{stem_new}.json'

                image = parent / f
                json = Path(parent.replace('images', 'json')) / str(f).replace(suffix, '.json')

                os.system("cp '%s' '%s'" % (json, json_new))
                os.system("cp '%s' '%s'" % (image, image_new))
                # cv2.imwrite(str(image_new), cv2.imread(str(image)))

    print('Flattening complete: %g jsons and images' % n)


def coco91_to_coco80_class():  # converts 80-index (val2014) to 91-index (paper)
    # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
    x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None,
         None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
         51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
         None, 73, 74, 75, 76, 77, 78, 79, None]
    return x
slefjson2posetxt.py


import json

import cv2
import pandas as pd
from PIL import Image
from collections import defaultdict

from utils import *



def convert_coco_json(cocojsonpath, savepath,use_keypoints=False, cls91to80=True):
    """Converts COCO dataset annotations to a format suitable for training YOLOv5 models.

    Args:
        labels_dir (str, optional): Path to directory containing COCO dataset annotation files.
        use_segments (bool, optional): Whether to include segmentation masks in the output.
        use_keypoints (bool, optional): Whether to include keypoint annotations in the output.
        cls91to80 (bool, optional): Whether to map 91 COCO class IDs to the corresponding 80 COCO class IDs.

    Raises:
        FileNotFoundError: If the labels_dir path does not exist.

    Example Usage:
        convert_coco(labels_dir='../coco/annotations/', use_segments=True, use_keypoints=True, cls91to80=True)

    Output:
        Generates output files in the specified output directory.
    """
    # save_dir = make_dirs('yolo_labels')  # output directory
    save_dir = make_dirs(savepath)  # output directory
    coco80 = coco91_to_coco80_class()

    # Import json
    for json_file in sorted(Path(cocojsonpath).resolve().glob('*.json')):
        fn = Path(save_dir) / 'labels' / json_file.stem.replace('instances_', '')  # folder name
        fn.mkdir(parents=True, exist_ok=True)
        with open(json_file) as f:
            data = json.load(f)

        # Create image dict
        images = {f'{x["id"]:d}': x for x in data['images']}
        # Create image-annotations dict
        imgToAnns = defaultdict(list)
        for ann in data['annotations']:
            imgToAnns[ann['image_id']].append(ann)

        # Write labels file
        for img_id, anns in tqdm(imgToAnns.items(), desc=f'Annotations {json_file}'):
            img = images[f'{img_id:d}']
            h, w, f = img['height'], img['width'], img['file_name']

            bboxes = []
            segments = []
            keypoints = []
            for ann in anns:
                if ann['iscrowd']:
                    continue
                # The COCO box format is [top left x, top left y, width, height]
                box = np.array(ann['bbox'], dtype=np.float64)
                box[:2] += box[2:] / 2  # xy top-left corner to center
                box[[0, 2]] /= w  # normalize x
                box[[1, 3]] /= h  # normalize y
                if box[2] <= 0 or box[3] <= 0:  # if w <= 0 and h <= 0
                    continue

                cls = coco80[ann['category_id'] - 1] if cls91to80 else ann['category_id'] - 1  # class
                box = [cls] + box.tolist()
                if box not in bboxes:
                    bboxes.append(box)
                if use_keypoints and ann.get('keypoints') is not None:
                    k = (np.array(ann['keypoints']).reshape(-1, 3) / np.array([w, h, 1])).reshape(-1).tolist()
                    k = box + k
                    keypoints.append(k)

            # Write
            fname = f.split('/')[-1]
            # with open((fn / f).with_suffix('.txt'), 'a') as file:
            with open((fn / fname).with_suffix('.txt'), 'a') as file:
                for i in range(len(bboxes)):
                    if use_keypoints:
                        line = *(keypoints[i]),  # cls, box, keypoints
                    file.write(('%g ' * len(line)).rstrip() % line + '\n')
if __name__ == '__main__':
    source = 'COCO'
    cocojsonpath = r'G:\XRW\Data\mycoco\annotations'
    savepath = r'G:\XRW\Data\myposedata'
    if source == 'COCO':
        convert_coco_json(cocojsonpath,  # directory with *.json
                          savepath,
                          use_keypoints=True,
                          cls91to80=True)

运行代码得到:

<class-index>是对象的类的索引,<x> <y> <width> <height>是边界框的坐标,<px1> <py1> <px2> <py2> ... <pxn> <pyn>是关键点的像素坐标。坐标由空格分隔。

3、检查生成的txt是否准确

PoseVisualization.py:将txt的信息可视化在图片上进行验证。


import cv2
imgpath = r'G:\XRW\Data\selfjson\five_22101205_000930.jpg'
txtpath = r'G:\XRW\Data\myposedata\labels\selfjson\five_22101205_000930.txt'

f = open(txtpath,'r')
lines = f.readlines()
img = cv2.imread(imgpath)
h, w, c = img.shape
colors = [[255, 128, 0], [255, 153, 51], [255, 178, 102], [230, 230, 0], [255, 153, 255],
                                      [153, 204, 255], [255, 102, 255], [255, 51, 255], [102, 178, 255], [51, 153, 255],
                                      [255, 153, 153], [255, 102, 102], [255, 51, 51], [153, 255, 153], [102, 255, 102],
                                      [51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0], [255, 255, 255]]
for line in lines:
    print(line)
    l = line.split(' ')
    print(len(l))
    cx = float(l[1]) * w
    cy = float(l[2]) * h
    weight = float(l[3]) * w
    height = float(l[4]) * h
    xmin = cx - weight/2
    ymin = cy - height/2
    xmax = cx + weight/2
    ymax = cy + height/2
    print((xmin,ymin),(xmax,ymax))
    cv2.rectangle(img,(int(xmin),int(ymin)),(int(xmax),int(ymax)),(0,255,0),2)
    kpts = []

    for i in range(17):
        x = float(l[5:][3*i]) * w
        y = float(l[5:][3*i+1]) * h
        s = int(l[5:][3*i+2])
        print(x,y,s)
        if s != 0:
            cv2.circle(img,(int(x),int(y)),1,colors[i],2)
        kpts.append([int(x),int(y),int(s)])
    print(kpts)
    kpt_line = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12], [7, 13], [6, 7], [6, 8], [7, 9],
                [8, 10], [9, 11], [2, 3], [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]]
    for j in range(len(kpt_line)):
        m,n = kpt_line[j][0],kpt_line[j][1]
        if kpts[m-1][2] !=0 and kpts[n-1][2] !=0:
            cv2.line(img,(kpts[m-1][0],kpts[m-1][1]),(kpts[n-1][0],kpts[n-1][1]),colors[j],2)

img = cv2.resize(img, None, fx=0.5, fy=0.5)
cv2.imshow('1',img)
cv2.waitKey(0)

这样就将自己的Json格式转成训练Yolov8-Pose姿态的txt格式了。

4、将图片copy到对应路径中

以上步骤完成后只生成了txt,需要再将对应的图片copy到对应路径中。

pickImg.py


import glob
import os
import shutil
imgpath = r'G:\XRW\Data\selfjson'
txtpath = r'G:\XRW\Data\myposedata\labels\selfjson'
savepath = r'G:\XRW\Data\myposedata\images\selfjson'
os.makedirs(savepath,exist_ok=True)

imglist = glob.glob(os.path.join(imgpath ,'*.jpg'))
# print(imglist)
txtlist = glob.glob(os.path.join(txtpath ,'*.txt'))
# print(txtlist)
for img in imglist:
    name = txtpath + '\\' +img.split('\\')[-1].split('.')[0 ] +'.txt'
    print(name)
    if name in txtlist:
        shutil.copy(img ,savepath)
  • imgpath CoCo数据集图片路径
  • txtpath 生成的txt路径
  • savepath 保存图片的路径

这样就将自己标注的数据集转换成Yolov8-Pose格式的txt了。

转载请注明出处或者链接地址:https://www.qianduange.cn//article/8712.html
评论
发布的文章

JQuery中的load()、$

2024-05-10 08:05:15

大家推荐的文章
会员中心 联系我 留言建议 回顶部
复制成功!