首页 前端知识 LangChain-21 Text Splitters 内容切分器 支持多种格式 HTML JSON md Code(JS/Py/TS/etc) 进行切分并输出 方便将数据进行结构化后检索

LangChain-21 Text Splitters 内容切分器 支持多种格式 HTML JSON md Code(JS/Py/TS/etc) 进行切分并输出 方便将数据进行结构化后检索

2024-08-25 23:08:45 前端知识 前端哥 833 931 我要收藏

请添加图片描述

背景介绍

LangChain提供了多种类型的Text Splitters,以满足不同的需求:

  • RecursiveCharacterTextSplitter:基于字符将文本划分,从第一个字符开始。如果结果片段太大,则继续划分下一个字符。这种方式提供了定义划分字符和片段大小的灵活性。
  • CharacterTextSplitter:类似于RecursiveCharacterTextSplitter,但能够指定自定义分隔符以实现更具体的划分。默认情况下,它尝试在如“\n\n”、“\n”和空格等字符上进行分割。
  • RecursiveTextSplitter:与前两种类型不同,RecursiveTextSplitter基于单词或令牌而不是字符来划分文本。这种方法提供了更多的语义视角,使其成为内容分析的理想选择。
  • TokenTextSplitter:利用OpenAI的语言模型基于令牌划分文本。这使得分割过程极其精确和具有上下文相关性,成为高级自然语言处理应用中不可或缺的工具。

安装依赖

pip install -qU langchain-text-splitters 

HTML Splitter

编写代码

from langchain_text_splitters import HTMLHeaderTextSplitter

html_string = """
<!DOCTYPE html>
<html>
<body>
    <div>
        <h1>Foo</h1>
        <p>Some intro text about Foo.</p>
        <div>
            <h2>Bar main section</h2>
            <p>Some intro text about Bar.</p>
            <h3>Bar subsection 1</h3>
            <p>Some text about the first subtopic of Bar.</p>
            <h3>Bar subsection 2</h3>
            <p>Some text about the second subtopic of Bar.</p>
        </div>
        <div>
            <h2>Baz</h2>
            <p>Some text about Baz</p>
        </div>
        <br>
        <p>Some concluding text about Foo</p>
    </div>
</body>
</html>
"""

headers_to_split_on = [
    ("h1", "Header 1"),
    ("h2", "Header 2"),
    ("h3", "Header 3"),
]

html_splitter = HTMLHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
html_header_splits = html_splitter.split_text(html_string)
html_header_splits

运行结果

➜ python3 test21.py
[Document(page_content='Foo'), Document(page_content='Some intro text about Foo.  \nBar main section Bar subsection 1 Bar subsection 2', metadata={'Header 1': 'Foo'}), Document(page_content='Some intro text about Bar.', metadata={'Header 1': 'Foo', 'Header 2': 'Bar main section'}), Document(page_content='Some text about the first subtopic of Bar.', metadata={'Header 1': 'Foo', 'Header 2': 'Bar main section', 'Header 3': 'Bar subsection 1'}), Document(page_content='Some text about the second subtopic of Bar.', metadata={'Header 1': 'Foo', 'Header 2': 'Bar main section', 'Header 3': 'Bar subsection 2'}), Document(page_content='Baz', metadata={'Header 1': 'Foo'}), Document(page_content='Some text about Baz', metadata={'Header 1': 'Foo', 'Header 2': 'Baz'}), Document(page_content='Some concluding text about Foo', metadata={'Header 1': 'Foo'})]

WebHTML Splitter

编写代码

from langchain_text_splitters import RecursiveCharacterTextSplitter

url = "https://plato.stanford.edu/entries/goedel/"

headers_to_split_on = [
    ("h1", "Header 1"),
    ("h2", "Header 2"),
    ("h3", "Header 3"),
    ("h4", "Header 4"),
]

html_splitter = HTMLHeaderTextSplitter(headers_to_split_on=headers_to_split_on)

# for local file use html_splitter.split_text_from_file(<path_to_file>)
html_header_splits = html_splitter.split_text_from_url(url)

chunk_size = 500
chunk_overlap = 30
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=chunk_size, chunk_overlap=chunk_overlap
)

# Split
splits = text_splitter.split_documents(html_header_splits)
print(splits[80:85])

Character Splitter

编写代码

from langchain_text_splitters import CharacterTextSplitter


with open("../../state_of_the_union.txt") as f:
    state_of_the_union = f.read()

text_splitter = CharacterTextSplitter(
    separator="\n\n",
    chunk_size=1000,
    chunk_overlap=200,
    length_function=len,
    is_separator_regex=False,
)

texts = text_splitter.create_documents([state_of_the_union])
print(texts[0])

Code Splitter

编写代码

from langchain_text_splitters import (
    Language,
    RecursiveCharacterTextSplitter,
)

# Full list of supported languages
[e.value for e in Language]

# You can also see the separators used for a given language
RecursiveCharacterTextSplitter.get_separators_for_language(Language.PYTHON)

Python Code Splitter

编写代码

PYTHON_CODE = """
def hello_world():
    print("Hello, World!")

# Call the function
hello_world()
"""
python_splitter = RecursiveCharacterTextSplitter.from_language(
    language=Language.PYTHON, chunk_size=50, chunk_overlap=0
)
python_docs = python_splitter.create_documents([PYTHON_CODE])
print(python_docs)

JavaScript Code Splitter

编写代码

JS_CODE = """
function helloWorld() {
  console.log("Hello, World!");
}

// Call the function
helloWorld();
"""

js_splitter = RecursiveCharacterTextSplitter.from_language(
  language=Language.JS, chunk_size=60, chunk_overlap=0
)
js_docs = js_splitter.create_documents([JS_CODE])

TypeScript Code Splitter

编写代码

TS_CODE = """
function helloWorld(): void {
  console.log("Hello, World!");
}

// Call the function
helloWorld();
"""

ts_splitter = RecursiveCharacterTextSplitter.from_language(
  language=Language.TS, chunk_size=60, chunk_overlap=0
)
ts_docs = ts_splitter.create_documents([TS_CODE])
print(ts_docs)

Markdown Splitter

编写代码

文本内容:

markdown_text = """
# 🦜️🔗 LangChain

⚡ Building applications with LLMs through composability ⚡

## Quick Install

``bash
 Hopefully this code block isn't split
pip install langchain
``

As an open-source project in a rapidly developing field, we are extremely open to contributions.
"""

代码解析:

md_splitter = RecursiveCharacterTextSplitter.from_language(
    language=Language.MARKDOWN, chunk_size=60, chunk_overlap=0
)
md_docs = md_splitter.create_documents([markdown_text])
print(md_docs)

Markdown Header Splitter

编写代码

文本内容:

# Foo\n\n ## Bar\n\nHi this is Jim  \nHi this is Joe\n\n ## Baz\n\n Hi this is Molly

代码解析:

from langchain_text_splitters import MarkdownHeaderTextSplitter

markdown_document = "# Foo\n\n    ## Bar\n\nHi this is Jim\n\nHi this is Joe\n\n ### Boo \n\n Hi this is Lance \n\n ## Baz\n\n Hi this is Molly"

headers_to_split_on = [
    ("#", "Header 1"),
    ("##", "Header 2"),
    ("###", "Header 3"),
]

markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
md_header_splits = markdown_splitter.split_text(markdown_document)
print(md_header_splits)

JSON Splitter

import json
import requests
from langchain_text_splitters import RecursiveJsonSplitter


json_data = requests.get("https://api.smith.langchain.com/openapi.json").json()
splitter = RecursiveJsonSplitter(max_chunk_size=300)
# Recursively split json data - If you need to access/manipulate the smaller json chunks
json_chunks = splitter.split_json(json_data=json_data)
# The splitter can also output documents
docs = splitter.create_documents(texts=[json_data])

# or a list of strings
texts = splitter.split_text(json_data=json_data)

print(texts[0])
print(texts[1])
转载请注明出处或者链接地址:https://www.qianduange.cn//article/16849.html
评论
发布的文章

安装Nodejs后,npm无法使用

2024-11-30 11:11:38

大家推荐的文章
会员中心 联系我 留言建议 回顶部
复制成功!