首页 前端知识 谷粒商城实战笔记-127-全文检索-ElasticSearch-整合-测试复杂检索

谷粒商城实战笔记-127-全文检索-ElasticSearch-整合-测试复杂检索

2024-08-10 00:08:39 前端知识 前端哥 442 370 我要收藏

文章目录

  • 一,使用Elasticsearch的Java RESTHighLevel Client完成复杂的查询请求
    • 1. 创建检索请求 (`SearchRequest`)
    • 2. 构造检索条件 (`SearchSourceBuilder`)
    • 3. 执行检索 (`SearchResponse`)
    • 4. 处理解析结果
    • 5. 获取聚合信息
  • 二,AI时代的效率提升

一,使用Elasticsearch的Java RESTHighLevel Client完成复杂的查询请求

前面es进阶学习中,我们学习过复杂的DSL查询。

POST bank/_search
{
  "query": {
    "match": {
      "address": {
        "query": "Mill"
      }
    }
  },
  "aggregations": {
    "ageAgg": {
      "terms": {
        "field": "age",
        "size": 10
      }
    },
    "ageAvg": {
      "avg": {
        "field": "age"
      }
    },
    "balanceAvg": {
      "avg": {
        "field": "balance"
      }
    }
  }
}

如何使用Java客户端执行复杂的查询呢?

使用Elasticsearch的Java REST High-Level Client执行一个复杂的带有聚合的搜索请求。

1. 创建检索请求 (SearchRequest)

  • 创建 SearchRequest 对象:

    • SearchRequest searchRequest = new SearchRequest();
  • 指定索引:

    • searchRequest.indices("bank");

2. 构造检索条件 (SearchSourceBuilder)

  • 创建 SearchSourceBuilder 对象:

    • SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
  • 设置查询条件:

    • sourceBuilder.query(QueryBuilders.matchQuery("address", "Mill"));
  • 添加聚合:

    • 按年龄分组的聚合:

      • TermsAggregationBuilder ageAgg = AggregationBuilders.terms("ageAgg").field("age").size(10);
      • sourceBuilder.aggregation(ageAgg);
    • 计算平均年龄:

      • AvgAggregationBuilder ageAvg = AggregationBuilders.avg("ageAvg").field("age");
      • sourceBuilder.aggregation(ageAvg);
    • 计算平均薪资:

      • AvgAggregationBuilder balanceAvg = AggregationBuilders.avg("balanceAvg").field("balance");
      • sourceBuilder.aggregation(balanceAvg);
  • 打印检索条件:

    • System.out.println("检索条件:" + sourceBuilder);
  • 将检索条件添加到 SearchRequest:

    • searchRequest.source(sourceBuilder);

3. 执行检索 (SearchResponse)

  • 执行搜索请求:

    • SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
  • 打印检索结果:

    • System.out.println("检索结果:" + searchResponse);

4. 处理解析结果

  • 获取搜索命中的文档:

    • SearchHits hits = searchResponse.getHits();
    • SearchHit[] searchHits = hits.getHits();
  • 遍历并处理每个文档:

    • for (SearchHit searchHit : searchHits) {
          String sourceAsString = searchHit.getSourceAsString();
          Account account = JSON.parseObject(sourceAsString, Account.class);
          System.out.println(account);
      }
      

5. 获取聚合信息

  • 获取聚合结果:

    • Aggregations aggregations = searchResponse.getAggregations();
  • 处理年龄分布的聚合:

    • Terms ageAgg1 = aggregations.get("ageAgg");
      for (Terms.Bucket bucket : ageAgg1.getBuckets()) {
          String keyAsString = bucket.getKeyAsString();
          System.out.println("年龄:" + keyAsString + " ==> " + bucket.getDocCount());
      }
      
  • 处理平均年龄的聚合:

    • Avg ageAvg1 = aggregations.get("ageAvg");
      System.out.println("平均年龄:" + ageAvg1.getValue());
      
  • 处理平均薪资的聚合:

    • Avg balanceAvg1 = aggregations.get("balanceAvg");
      System.out.println("平均薪资:" + balanceAvg1.getValue());
      

完整代码如下:

	/**
     * 复杂检索
     */
    
    public void searchData() throws IOException {
        //1. 创建检索请求
        SearchRequest searchRequest = new SearchRequest();

        //1.1)指定索引
        searchRequest.indices("bank");
        //1.2)构造检索条件
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        sourceBuilder.query(QueryBuilders.matchQuery("address", "Mill"));

        //1.2.1)按照年龄分布进行聚合
        TermsAggregationBuilder ageAgg = AggregationBuilders.terms("ageAgg").field("age").size(10);
        sourceBuilder.aggregation(ageAgg);

        //1.2.2)计算平均年龄
        AvgAggregationBuilder ageAvg = AggregationBuilders.avg("ageAvg").field("age");
        sourceBuilder.aggregation(ageAvg);
        //1.2.3)计算平均薪资
        AvgAggregationBuilder balanceAvg = AggregationBuilders.avg("balanceAvg").field("balance");
        sourceBuilder.aggregation(balanceAvg);

        System.out.println("检索条件:" + sourceBuilder);
        searchRequest.source(sourceBuilder);
        
        //2. 执行检索
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        System.out.println("检索结果:" + searchResponse);

        //3. 将检索结果封装为Bean
        SearchHits hits = searchResponse.getHits();
        SearchHit[] searchHits = hits.getHits();
        for (SearchHit searchHit : searchHits) {
            String sourceAsString = searchHit.getSourceAsString();
            Account account = JSON.parseObject(sourceAsString, Account.class);
            System.out.println(account);

        }

        //4. 获取聚合信息
        Aggregations aggregations = searchResponse.getAggregations();

        Terms ageAgg1 = aggregations.get("ageAgg");

        for (Terms.Bucket bucket : ageAgg1.getBuckets()) {
            String keyAsString = bucket.getKeyAsString();
            System.out.println("年龄:" + keyAsString + " ==> " + bucket.getDocCount());
        }
        Avg ageAvg1 = aggregations.get("ageAvg");
        System.out.println("平均年龄:" + ageAvg1.getValue());

        Avg balanceAvg1 = aggregations.get("balanceAvg");
        System.out.println("平均薪资:" + balanceAvg1.getValue());
    }

二,AI时代的效率提升

相对于DSL,使用Java客户端来完成复杂的请求,代码是比较复杂不好理解的。

DSL相对清晰、容易理解。

所以,我们可以先根据需求,写好DSL,然后用大模型工具比如通义千问、Kimi、ChatGPT等将DSL转换为Java代码,这样我们就无需逐行编写复杂难懂的Java代码了,只需要在测试过程中进行微调即可。

转载请注明出处或者链接地址:https://www.qianduange.cn//article/15153.html
评论
发布的文章

安装Nodejs后,npm无法使用

2024-11-30 11:11:38

大家推荐的文章
会员中心 联系我 留言建议 回顶部
复制成功!