一、代码块目录详情

二、json2txt.py
| import json |
| import os |
| |
| |
| def convert_annotation(json_file, txt_file, label_to_id_mapping): |
| |
| with open(json_file, 'r', encoding='utf-8') as f: |
| data = json.load(f) |
| |
| |
| image_width = data.get('imageWidth') |
| image_height = data.get('imageHeight') |
| |
| |
| if image_width is None or image_height is None: |
| raise ValueError(f"Missing image dimensions in {json_file}") |
| |
| |
| with open(txt_file, 'w', encoding='utf-8') as out_file: |
| for shape in data.get('shapes', []): |
| |
| points = shape.get('points', []) |
| |
| |
| if not points: |
| raise ValueError(f"Missing points in a shape in {json_file}") |
| |
| x_values = [point[0] for point in points] |
| y_values = [point[1] for point in points] |
| |
| x_min = min(x_values) |
| y_min = min(y_values) |
| x_max = max(x_values) |
| y_max = max(y_values) |
| |
| |
| bbox_center_x = (x_min + x_max) / 2 |
| bbox_center_y = (y_min + y_max) / 2 |
| bbox_width = x_max - x_min |
| bbox_height = y_max - y_min |
| |
| |
| bbox_center_x_ratio = bbox_center_x / image_width |
| bbox_center_y_ratio = bbox_center_y / image_height |
| bbox_width_ratio = bbox_width / image_width |
| bbox_height_ratio = bbox_height / image_height |
| |
| |
| category_id = shape.get('label', "unknown") |
| if isinstance(category_id, str): |
| |
| category_id = label_to_id_mapping.get(category_id, -1) |
| |
| |
| out_file.write( |
| f"{int(category_id)} {bbox_center_x_ratio} {bbox_center_y_ratio} {bbox_width_ratio} {bbox_height_ratio}\n") |
| |
| |
| |
| |
| input_folder = 'D:/sss/datasets/VOCdevkit/jsons' |
| output_folder = 'D:/sss/datasets/VOCdevkit/txt' |
| os.makedirs(output_folder, exist_ok=True) |
| |
| |
| label_to_id_mapping = { |
| 'Red Light': 0, |
| 'Red Light': 1, |
| 'Yellow Light': 2 |
| |
| } |
| |
| |
| for filename in os.listdir(input_folder): |
| if filename.endswith('.json'): |
| json_file = os.path.join(input_folder, filename) |
| txt_file = os.path.join(output_folder, filename.replace('.json', '.txt')) |
| try: |
| convert_annotation(json_file, txt_file, label_to_id_mapping) |
| print(f'{txt_file},Conversion successful!') |
| except Exception as e: |
| print(f"An error occurred while processing {json_file}: {e}") |
复制
三、split_data.py
| import os, shutil |
| from sklearn.model_selection import train_test_split |
| |
| val_size = 0.1 |
| test_size = 0.1 |
| postfix = 'jpg' |
| imgpath = 'VOCdevkit/images' |
| txtpath = 'VOCdevkit/txt' |
| |
| os.makedirs('images/train', exist_ok=True) |
| os.makedirs('images/val', exist_ok=True) |
| os.makedirs('images/test', exist_ok=True) |
| os.makedirs('labels/train', exist_ok=True) |
| os.makedirs('labels/val', exist_ok=True) |
| os.makedirs('labels/test', exist_ok=True) |
| |
| listdir = [i for i in os.listdir(txtpath) if 'txt' in i] |
| train, test = train_test_split(listdir, test_size=test_size, shuffle=True, random_state=0) |
| train, val = train_test_split(train, test_size=val_size, shuffle=True, random_state=0) |
| print(f'train set size:{len(train)} val set size:{len(val)} test set size:{len(test)}') |
| |
| for i in train: |
| shutil.copy('{}/{}.{}'.format(imgpath, i[:-4], postfix), 'images/train/{}.{}'.format(i[:-4], postfix)) |
| shutil.copy('{}/{}'.format(txtpath, i), 'labels/train/{}'.format(i)) |
| |
| for i in val: |
| shutil.copy('{}/{}.{}'.format(imgpath, i[:-4], postfix), 'images/val/{}.{}'.format(i[:-4], postfix)) |
| shutil.copy('{}/{}'.format(txtpath, i), 'labels/val/{}'.format(i)) |
| |
| for i in test: |
| shutil.copy('{}/{}.{}'.format(imgpath, i[:-4], postfix), 'images/test/{}.{}'.format(i[:-4], postfix)) |
| shutil.copy('{}/{}'.format(txtpath, i), 'labels/test/{}'.format(i)) |
复制
四、data.yaml
| |
| train: D:\sss\datasets\images\train |
| val: D:\sss\datasets\images\val |
| test: D:\sss\datasets\images\test |
| |
| |
| nc: 3 |
| |
| |
| names: ['Red Light', 'Red Light', 'Yellow Light'] |
复制
兄台,本章对你有用的话,记得一键三连哦!
更多资源,请移步至本人的github首页:lcx9451 (lcx9451) (github.com)