首页 前端知识 2024年安卓最新sonic :基于 JIT 技术的开源全场景高性能 JSON 库,2024年最新社招面试的问题

2024年安卓最新sonic :基于 JIT 技术的开源全场景高性能 JSON 库,2024年最新社招面试的问题

2024-06-21 09:06:50 前端知识 前端哥 126 197 我要收藏

最后

如果你看到了这里,觉得文章写得不错就给个赞呗?如果你觉得那里值得改进的,请给我留言。一定会认真查询,修正不足。谢谢。

欢迎大家一起交流讨论啊~

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  1. 后续解析,直接根据 type ID (rtype.hash)从 cache 中加载对应的 codec 处理 JSON。

从最终实现的结果来看,sonic-JIT 生成的 codec 性能不仅好于 json-iterator,甚至超过了代码生成方式的 easyjson(见后文“性能测试”章节)。这一方面跟底层文本处理算子的优化有关(见后文“SIMD & asm2asm”章节),另一方面来自于 sonic-JIT 能控制底层 CPU 指令,在运行时建立了一套独立高效的 ABI(Application Binary Interface)体系:

  • 将使用频繁的变量放到固定的寄存器上(如 JSON buffer、结构体指针),尽量避免 memory load & store;

  • 自己维护变量栈(内存池),避免 Go 函数栈扩展;

  • 自动生成跳转表,加速 generic decoding 的分支跳转;

  • 使用寄存器传递参数(当前 Go Assembly 并未支持,见“SIMD & asm2asm”章节)。

Lazy-load

对于大部分 Go JSON 库,泛型编解码是它们性能表现最差的场景之一,然而由于业务本身需要或业务开发者的选型不当,它往往也是被应用得最频繁的场景。

泛型编解码性能差仅仅是因为没有 schema 吗?其实不然。我们可以对比一下 C++ 的 JSON 库,如 rappidjson、simdjson,它们的解析方式都是泛型的,但性能仍然很好(simdjson 可达 2GB/s 以上)。标准库泛型解析性能差的根本原因在于它采用了 Go 原生泛型——interface(map[string]interface{})作为 JSON 的编解码对象

这其实是一种糟糕的选择:首先是数据反序列化的过程中,map 插入的开销很高;其次在数据序列化过程中,map 遍历也远不如数组高效。

回过头来看,JSON 本身就具有完整的自描述能力,如果我们用一种与 JSON AST 更贴近的数据结构来描述,不但可以让转换过程更加简单,甚至可以实现按需加载(lazy-load)——这便是 sonic-ast 的核心逻辑:它是一种 JSON 在 Go 中的编解码对象,用 node {type, length, pointer} 表示任意一个 JSON 数据节点,并结合树与数组结构描述节点之间的层级关系

d1eba71c3a30889103fbbfa396e0c052.png

sonic-ast 结构示意

sonic-ast 实现了一种有状态、可伸缩的 JSON 解析过程:当使用者 get 某个 key 时,sonic 采用 skip 计算来轻量化跳过要获取的 key 之前的 json 文本;对于该 key 之后的 JSON 节点,直接不做任何的解析处理;仅使用者真正需要的 key 才完全解析(转为某种 Go 原始类型)。由于节点转换相比解析 JSON 代价小得多,在并不需要完整数据的业务场景下收益相当可观。

虽然 skip 是一种轻量的文本解析(处理 JSON 控制字符“[”、“{”等),但是使用类似 gjson 这种纯粹的 JSON 查找库时,往往会有相同路径查找导致的重复开销。

针对该问题,sonic 在对于子节点 skip 处理过程增加了一个步骤,将跳过 JSON 的 key、起始位、结束位记录下来,分配一个 Raw-JSON 类型的节点保存下来,这样二次 skip 就可以直接基于节点的 offset 进行。同时 sonic-ast 支持了节点的更新、插入和序列化,甚至支持将任意 Go types 转为节点并保存下来。

换言之,sonic-ast 可以作为一种通用的泛型数据容器替代 Go interface,在协议转换、动态代理等服务场景有巨大潜力。

SIMD & asm2asm

无论是定型编解码场景还是泛型编解码场景,核心都离不开 JSON 文本的处理与计算。其中一些问题在业界已经有比较成熟高效的解决方案,如浮点数转字符串算法 Ryu,整数转字符串的查表法等,这些都被实现到 sonic 的底层文本算子中。

还有一些问题逻辑相对简单,但是可能会面对较大数量级的文本,如 JSON string 的 unquote\quote 处理、空白字符的跳过等。此时我们就需要某种技术手段来提升处理能力。SIMD 就是这样一种用于并行处理大规模数据的技术,目前大部分 CPU 已具备 SIMD 指令集(例如 Intel AVX),并且在 simdjson 中有比较成功的实践。

下面是一段 sonic 中 skip 空白字符的算法代码:

#if USE_AVX2

// 一次比较比较32个字符

while (likely(nb >= 32)) {

// vmovd 将单个字符转成YMM

__m256i x = _mm256_load_si256 ((const void *)sp);

// vpcmpeqb 比较字符,同时为了充分利用CPU 超标量特性使用4 倍循环

__m256i a = _mm256_cmpeq_epi8 (x, _mm256_set1_epi8(’ '));

__m256i b = _mm256_cmpeq_epi8 (x, _mm256_set1_epi8(‘\t’));

__m256i c = _mm256_cmpeq_epi8 (x, _mm256_set1_epi8(‘\n’));

__m256i d = _mm256_cmpeq_epi8 (x, _mm256_set1_epi8(‘\r’));

// vpor 融合4次结果

__m256i u = _mm256_or_si256   (a, b);

__m256i v = _mm256_or_si256   (c, d);

__m256i w = _mm256_or_si256   (u, v);

// vpmovmskb  将比较结果按位展示

if ((ms = _mm256_movemask_epi8(w)) != -1) {

_mm256_zeroupper();

// tzcnt 计算末尾零的个数N

return sp - ss + __builtin_ctzll(~(uint64_t)ms);

}

/* move to next block */

sp += 32;

nb -= 32;

}

/* clear upper half to avoid AVX-SSE transition penalty */

_mm256_zeroupper();

#endif

sonic 中 strnchr() 实现(SIMD 部分)

开发者们会发现这段代码其实是用 C 语言编写的 —— 其实 sonic 中绝大多数文本处理函数都是用 C 实现的:一方面 SIMD 指令集在 C 语言下有较好的封装,实现起来较为容易;另一方面这些 C 代码通过 clang 编译能充分享受其编译优化带来的提升。为此我们开发了一套 x86 汇编转 Plan9 汇编的工具 asm2asm,将 clang 输出的汇编通过 Go Assembly 机制静态嵌入到 sonic 中。同时在 JIT 生成的 codec 中我们利用 asm2asm 工具计算好的 C 函数 PC 值,直接调用 CALL 指令跳转,从而绕过 Go Assembly 不能寄存器传参的限制,压榨最后一丝 CPU 性能。

其它

除了上述提到的技术外,sonic 内部还有很多的细节优化,比如使用 RCU 替换 sync.Map 提升 codec cache 的加载速度,使用内存池减少 encode buffer 的内存分配,等等。这里限于篇幅便不详细展开介绍了,感兴趣的同学可以自行搜索阅读 sonic 源码进行了解。

性能测试


我们以前文中的不同测试场景进行测试,得到结果如下:

7237eee4173ff5cfa8bb26dd011d5bf3.png

小数据(400B,11 个 key,深度 3 层)

9c682aa4dade65b173afd12475b81486.png

中数据(110KB,300+ key,深度 4 层)

31456fe20e947b1aba0fce0a5cad4fb1.png

大数据(550KB,10000+ key,深度 6 层)

可以看到 sonic 在几乎所有场景下都处于领先(sonic-ast 由于直接使用了 Go Assembly 导入的 C 函数导致小数据集下有一定性能折损)

  • 平均编码性能较 json-iterator 提升 240% ,平均解码性能较 json-iterator 提升 110% ;

  • 单 key 修改能力较 sjson 提升 75% 。

并且在生产环境中,sonic 中也验证了良好的收益,服务高峰期占用核数减少将近三分之一:

9d752131e6a70d12270b2bcc16301acd.png

字节某服务在 sonic 上线前后的 CPU 占用(核数)对比

结语

由于底层基于汇编进行开发,sonic 当前仅支持 amd64 架构下的 darwin/linux 平台 ,后续会逐步扩展到其它操作系统及架构。除此之外,我们也考虑将 sonic 在 Go 语言上的成功经验移植到不同语言及序列化协议中。目前 sonic 的 C++ 版本正在开发中,其定位是基于 sonic 核心思想及底层算子实现一套通用的高性能 JSON 编解码接口。

最后

只要是程序员,不管是Java还是Android,如果不去阅读源码,只看API文档,那就只是停留于皮毛,这对我们知识体系的建立和完备以及实战技术的提升都是不利的。

真正最能锻炼能力的便是直接去阅读源码,不仅限于阅读各大系统源码,还包括各种优秀的开源库。

腾讯、字节跳动、阿里、百度等BAT大厂 2019-2021面试真题解析

资料太多,全部展示会影响篇幅,暂时就先列举这些部分截图

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

资料太多,全部展示会影响篇幅,暂时就先列举这些部分截图

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

转载请注明出处或者链接地址:https://www.qianduange.cn//article/13198.html
标签
评论
发布的文章

JQuery中的load()、$

2024-05-10 08:05:15

大家推荐的文章
会员中心 联系我 留言建议 回顶部
复制成功!