首页 前端知识 Pyecharts绘制图表大全——柱形图

Pyecharts绘制图表大全——柱形图

2024-06-01 10:06:40 前端知识 前端哥 349 369 我要收藏

说明:本文代码资料等来源于Pyecharts官网,进行了一些重要节点的备注说明梳理,便于学习。

今日学习柱形图!

目录

百分比柱形图

 x轴标签旋转

 堆叠数据

 动态宏观经济指标图

 通过 dict 进行配置柱形图

 区域选择组件配置项

 区域缩放配置项

 好全的工具箱!

 类似于瀑布图

 柱形图与折线组合图

 图形组件的使用-可加水印

 堆叠部分数据

 x轴y轴命名

 添加自定义背景图

 柱状图动画延迟&分割线

 可以垂直滑动的数据区域

 直方图(颜色区分)

 y轴格式化单位

 标记点最大-最小-平均值

 3个y轴

 自定义柱状图颜色

 不同系列柱间距离

  标记线最大-最小-平均值

 渐变圆柱

 单系列柱间距离

 鼠标滚轮选择缩放区域

 默认取消显示某 Series

 翻转 XY 轴

 自定义标记多个点

 动画配置基本示例

 直方图

 自定义多条标记线

 基本图表示例

 水平滑动&鼠标滚轮缩放


百分比柱形图

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode
from pyecharts.globals import ThemeType

list2 = [
    {"value": 12, "percent": 12 / (12 + 3)},
    {"value": 23, "percent": 23 / (23 + 21)},
    {"value": 33, "percent": 33 / (33 + 5)},
    {"value": 3, "percent": 3 / (3 + 52)},
    {"value": 33, "percent": 33 / (33 + 43)},
]

list3 = [
    {"value": 3, "percent": 3 / (12 + 3)},
    {"value": 21, "percent": 21 / (23 + 21)},
    {"value": 5, "percent": 5 / (33 + 5)},
    {"value": 52, "percent": 52 / (3 + 52)},
    {"value": 43, "percent": 43 / (33 + 43)},
]

c = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))   #主题
    .add_xaxis([1, 2, 3, 4, 5])
    .add_yaxis("product1", list2, stack="stack1", category_gap="50%")
    # stack数据堆叠,同个类目轴上系列配置相同的stack值可以堆叠放置
    # category_gap同一系列的柱间距离,默认为类目间距的 20%,可设固定值
    .add_yaxis("product2", list3, stack="stack1", category_gap="50%")
    .set_series_opts(   
        label_opts=opts.LabelOpts(   #标签配置项
            position="right",  #标签位置靠右
            formatter=JsCode(   #回调函数
                "function(x){return Number(x.data.percent * 100).toFixed() + '%';}"
            ),
        )
    )
    
#     .render("stack_bar_percent.html")
)
c.render_notebook()    #Jupyter Notebook直接显示

 x轴标签旋转

from pyecharts import options as opts
from pyecharts.charts import Bar

c = (
    Bar()
    .add_xaxis(
        [
            "名字很长的X轴标签1",
            "名字很长的X轴标签2",
            "名字很长的X轴标签3",
            "名字很长的X轴标签4",
            "名字很长的X轴标签5",
            "名字很长的X轴标签6",
        ]
    )
    .add_yaxis("商家A", [10, 20, 30, 40, 50, 40])
    .add_yaxis("商家B", [20, 10, 40, 30, 40, 50])
    .set_global_opts(  #全局配置项
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),  #坐标轴配置项  ,rotate标签旋转。从 -90 度到 90 度。正值是逆时针
        title_opts=opts.TitleOpts(title="Bar-旋转X轴标签", subtitle="解决标签名字过长的问题"),  #标题配置项
    )
#     .render("bar_rotate_xaxis_label.html")
)
c.render_notebook()    #Jupyter Notebook直接显示

 

 

 堆叠数据

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker  #导入伪数据库

c = (
    Bar()
    .add_xaxis(Faker.choose())   #随机横坐标
    .add_yaxis("商家A", Faker.values(), stack="stack1", category_gap="50%") # stack数据堆叠,同个类目轴上系列配置相同的stack值可以堆叠放置
    .add_yaxis("商家B", Faker.values(), stack="stack1", category_gap="50%") # category_gap同一系列的柱间距离,默认为类目间距的 20%,可设固定值
    .set_series_opts(label_opts=opts.LabelOpts(is_show=True,position='right'))  #is_show是否显示标签
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-堆叠数据(全部)"))
#     .render("bar_stack0.html")
)
c.render_notebook()    #Jupyter Notebook直接显示

 动态宏观经济指标图

import pyecharts.options as opts
from pyecharts.charts import Timeline, Bar, Pie

"""
Gallery 使用 pyecharts 1.1.0
参考地址: https://www.echartsjs.com/examples/editor.html?c=mix-timeline-finance

目前无法实现的功能:

1、暂无
"""
total_data = {}
name_list = [
    "北京",
    "天津",
    "河北",
    "山西",
    "内蒙古",
    "辽宁",
    "吉林",
    "黑龙江",
    "上海",
    "江苏",
    "浙江",
    "安徽",
    "福建",
    "江西",
    "山东",
    "河南",
    "湖北",
    "湖南",
    "广东",
    "广西",
    "海南",
    "重庆",
    "四川",
    "贵州",
    "云南",
    "西藏",
    "陕西",
    "甘肃",
    "青海",
    "宁夏",
    "新疆",
]
data_gdp = {
    2011: [
        16251.93,
        11307.28,
        24515.76,
        11237.55,
        14359.88,
        22226.7,
        10568.83,
        12582,
        19195.69,
        49110.27,
        32318.85,
        15300.65,
        17560.18,
        11702.82,
        45361.85,
        26931.03,
        19632.26,
        19669.56,
        53210.28,
        11720.87,
        2522.66,
        10011.37,
        21026.68,
        5701.84,
        8893.12,
        605.83,
        12512.3,
        5020.37,
        1670.44,
        2102.21,
        6610.05,
    ],
    2010: [
        14113.58,
        9224.46,
        20394.26,
        9200.86,
        11672,
        18457.27,
        8667.58,
        10368.6,
        17165.98,
        41425.48,
        27722.31,
        12359.33,
        14737.12,
        9451.26,
        39169.92,
        23092.36,
        15967.61,
        16037.96,
        46013.06,
        9569.85,
        2064.5,
        7925.58,
        17185.48,
        4602.16,
        7224.18,
        507.46,
        10123.48,
        4120.75,
        1350.43,
        1689.65,
        5437.47,
    ],
    2009: [
        12153.03,
        7521.85,
        17235.48,
        7358.31,
        9740.25,
        15212.49,
        7278.75,
        8587,
        15046.45,
        34457.3,
        22990.35,
        10062.82,
        12236.53,
        7655.18,
        33896.65,
        19480.46,
        12961.1,
        13059.69,
        39482.56,
        7759.16,
        1654.21,
        6530.01,
        14151.28,
        3912.68,
        6169.75,
        441.36,
        8169.8,
        3387.56,
        1081.27,
        1353.31,
        4277.05,
    ],
    2008: [
        11115,
        6719.01,
        16011.97,
        7315.4,
        8496.2,
        13668.58,
        6426.1,
        8314.37,
        14069.87,
        30981.98,
        21462.69,
        8851.66,
        10823.01,
        6971.05,
        30933.28,
        18018.53,
        11328.92,
        11555,
        36796.71,
        7021,
        1503.06,
        5793.66,
        12601.23,
        3561.56,
        5692.12,
        394.85,
        7314.58,
        3166.82,
        1018.62,
        1203.92,
        4183.21,
    ],
    2007: [
        9846.81,
        5252.76,
        13607.32,
        6024.45,
        6423.18,
        11164.3,
        5284.69,
        7104,
        12494.01,
        26018.48,
        18753.73,
        7360.92,
        9248.53,
        5800.25,
        25776.91,
        15012.46,
        9333.4,
        9439.6,
        31777.01,
        5823.41,
        1254.17,
        4676.13,
        10562.39,
        2884.11,
        4772.52,
        341.43,
        5757.29,
        2703.98,
        797.35,
        919.11,
        3523.16,
    ],
    2006: [
        8117.78,
        4462.74,
        11467.6,
        4878.61,
        4944.25,
        9304.52,
        4275.12,
        6211.8,
        10572.24,
        21742.05,
        15718.47,
        6112.5,
        7583.85,
        4820.53,
        21900.19,
        12362.79,
        7617.47,
        7688.67,
        26587.76,
        4746.16,
        1065.67,
        3907.23,
        8690.24,
        2338.98,
        3988.14,
        290.76,
        4743.61,
        2277.35,
        648.5,
        725.9,
        3045.26,
    ],
    2005: [
        6969.52,
        3905.64,
        10012.11,
        4230.53,
        3905.03,
        8047.26,
        3620.27,
        5513.7,
        9247.66,
        18598.69,
        13417.68,
        5350.17,
        6554.69,
        4056.76,
        18366.87,
        10587.42,
        6590.19,
        6596.1,
        22557.37,
        3984.1,
        918.75,
        3467.72,
        7385.1,
        2005.42,
        3462.73,
        248.8,
        3933.72,
        1933.98,
        543.32,
        612.61,
        2604.19,
    ],
    2004: [
        6033.21,
        3110.97,
        8477.63,
        3571.37,
        3041.07,
        6672,
        3122.01,
        4750.6,
        8072.83,
        15003.6,
        11648.7,
        4759.3,
        5763.35,
        3456.7,
        15021.84,
        8553.79,
        5633.24,
        5641.94,
        18864.62,
        3433.5,
        819.66,
        3034.58,
        6379.63,
        1677.8,
        3081.91,
        220.34,
        3175.58,
        1688.49,
        466.1,
        537.11,
        2209.09,
    ],
    2003: [
        5007.21,
        2578.03,
        6921.29,
        2855.23,
        2388.38,
        6002.54,
        2662.08,
        4057.4,
        6694.23,
        12442.87,
        9705.02,
        3923.11,
        4983.67,
        2807.41,
        12078.15,
        6867.7,
        4757.45,
        4659.99,
        15844.64,
        2821.11,
        713.96,
        2555.72,
        5333.09,
        1426.34,
        2556.02,
        185.09,
        2587.72,
        1399.83,
        390.2,
        445.36,
        1886.35,
    ],
    2002: [
        4315,
        2150.76,
        6018.28,
        2324.8,
        1940.94,
        5458.22,
        2348.54,
        3637.2,
        5741.03,
        10606.85,
        8003.67,
        3519.72,
        4467.55,
        2450.48,
        10275.5,
        6035.48,
        4212.82,
        4151.54,
        13502.42,
        2523.73,
        642.73,
        2232.86,
        4725.01,
        1243.43,
        2312.82,
        162.04,
        2253.39,
        1232.03,
        340.65,
        377.16,
        1612.6,
    ],
}

data_pi = {
    2011: [
        136.27,
        159.72,
        2905.73,
        641.42,
        1306.3,
        1915.57,
        1277.44,
        1701.5,
        124.94,
        3064.78,
        1583.04,
        2015.31,
        1612.24,
        1391.07,
        3973.85,
        3512.24,
        2569.3,
        2768.03,
        2665.2,
        2047.23,
        659.23,
        844.52,
        2983.51,
        726.22,
        1411.01,
        74.47,
        1220.9,
        678.75,
        155.08,
        184.14,
        1139.03,
    ],
    2010: [
        124.36,
        145.58,
        2562.81,
        554.48,
        1095.28,
        1631.08,
        1050.15,
        1302.9,
        114.15,
        2540.1,
        1360.56,
        1729.02,
        1363.67,
        1206.98,
        3588.28,
        3258.09,
        2147,
        2325.5,
        2286.98,
        1675.06,
        539.83,
        685.38,
        2482.89,
        625.03,
        1108.38,
        68.72,
        988.45,
        599.28,
        134.92,
        159.29,
        1078.63,
    ],
    2009: [
        118.29,
        128.85,
        2207.34,
        477.59,
        929.6,
        1414.9,
        980.57,
        1154.33,
        113.82,
        2261.86,
        1163.08,
        1495.45,
        1182.74,
        1098.66,
        3226.64,
        2769.05,
        1795.9,
        1969.69,
        2010.27,
        1458.49,
        462.19,
        606.8,
        2240.61,
        550.27,
        1067.6,
        63.88,
        789.64,
        497.05,
        107.4,
        127.25,
        759.74,
    ],
    2008: [
        112.83,
        122.58,
        2034.59,
        313.58,
        907.95,
        1302.02,
        916.72,
        1088.94,
        111.8,
        2100.11,
        1095.96,
        1418.09,
        1158.17,
        1060.38,
        3002.65,
        2658.78,
        1780,
        1892.4,
        1973.05,
        1453.75,
        436.04,
        575.4,
        2216.15,
        539.19,
        1020.56,
        60.62,
        753.72,
        462.27,
        105.57,
        118.94,
        691.07,
    ],
    2007: [
        101.26,
        110.19,
        1804.72,
        311.97,
        762.1,
        1133.42,
        783.8,
        915.38,
        101.84,
        1816.31,
        986.02,
        1200.18,
        1002.11,
        905.77,
        2509.14,
        2217.66,
        1378,
        1626.48,
        1695.57,
        1241.35,
        361.07,
        482.39,
        2032,
        446.38,
        837.35,
        54.89,
        592.63,
        387.55,
        83.41,
        97.89,
        628.72,
    ],
    2006: [
        88.8,
        103.35,
        1461.81,
        276.77,
        634.94,
        939.43,
        672.76,
        750.14,
        93.81,
        1545.05,
        925.1,
        1011.03,
        865.98,
        786.14,
        2138.9,
        1916.74,
        1140.41,
        1272.2,
        1532.17,
        1032.47,
        323.48,
        386.38,
        1595.48,
        382.06,
        724.4,
        50.9,
        484.81,
        334,
        67.55,
        79.54,
        527.8,
    ],
    2005: [
        88.68,
        112.38,
        1400,
        262.42,
        589.56,
        882.41,
        625.61,
        684.6,
        90.26,
        1461.51,
        892.83,
        966.5,
        827.36,
        727.37,
        1963.51,
        1892.01,
        1082.13,
        1100.65,
        1428.27,
        912.5,
        300.75,
        463.4,
        1481.14,
        368.94,
        661.69,
        48.04,
        435.77,
        308.06,
        65.34,
        72.07,
        509.99,
    ],
    2004: [
        87.36,
        105.28,
        1370.43,
        276.3,
        522.8,
        798.43,
        568.69,
        605.79,
        83.45,
        1367.58,
        814.1,
        950.5,
        786.84,
        664.5,
        1778.45,
        1649.29,
        1020.09,
        1022.45,
        1248.59,
        817.88,
        278.76,
        428.05,
        1379.93,
        334.5,
        607.75,
        44.3,
        387.88,
        286.78,
        60.7,
        65.33,
        461.26,
    ],
    2003: [
        84.11,
        89.91,
        1064.05,
        215.19,
        420.1,
        615.8,
        488.23,
        504.8,
        81.02,
        1162.45,
        717.85,
        749.4,
        692.94,
        560,
        1480.67,
        1198.7,
        798.35,
        886.47,
        1072.91,
        658.78,
        244.29,
        339.06,
        1128.61,
        298.69,
        494.6,
        40.7,
        302.66,
        237.91,
        48.47,
        55.63,
        412.9,
    ],
    2002: [
        82.44,
        84.21,
        956.84,
        197.8,
        374.69,
        590.2,
        446.17,
        474.2,
        79.68,
        1110.44,
        685.2,
        783.66,
        664.78,
        535.98,
        1390,
        1288.36,
        707,
        847.25,
        1015.08,
        601.99,
        222.89,
        317.87,
        1047.95,
        281.1,
        463.44,
        39.75,
        282.21,
        215.51,
        47.31,
        52.95,
        305,
    ],
}

data_si = {
    2011: [
        3752.48,
        5928.32,
        13126.86,
        6635.26,
        8037.69,
        12152.15,
        5611.48,
        5962.41,
        7927.89,
        25203.28,
        16555.58,
        8309.38,
        9069.2,
        6390.55,
        24017.11,
        15427.08,
        9815.94,
        9361.99,
        26447.38,
        5675.32,
        714.5,
        5543.04,
        11029.13,
        2194.33,
        3780.32,
        208.79,
        6935.59,
        2377.83,
        975.18,
        1056.15,
        3225.9,
    ],
    2010: [
        3388.38,
        4840.23,
        10707.68,
        5234,
        6367.69,
        9976.82,
        4506.31,
        5025.15,
        7218.32,
        21753.93,
        14297.93,
        6436.62,
        7522.83,
        5122.88,
        21238.49,
        13226.38,
        7767.24,
        7343.19,
        23014.53,
        4511.68,
        571,
        4359.12,
        8672.18,
        1800.06,
        3223.49,
        163.92,
        5446.1,
        1984.97,
        744.63,
        827.91,
        2592.15,
    ],
    2009: [
        2855.55,
        3987.84,
        8959.83,
        3993.8,
        5114,
        7906.34,
        3541.92,
        4060.72,
        6001.78,
        18566.37,
        11908.49,
        4905.22,
        6005.3,
        3919.45,
        18901.83,
        11010.5,
        6038.08,
        5687.19,
        19419.7,
        3381.54,
        443.43,
        3448.77,
        6711.87,
        1476.62,
        2582.53,
        136.63,
        4236.42,
        1527.24,
        575.33,
        662.32,
        1929.59,
    ],
    2008: [
        2626.41,
        3709.78,
        8701.34,
        4242.36,
        4376.19,
        7158.84,
        3097.12,
        4319.75,
        6085.84,
        16993.34,
        11567.42,
        4198.93,
        5318.44,
        3554.81,
        17571.98,
        10259.99,
        5082.07,
        5028.93,
        18502.2,
        3037.74,
        423.55,
        3057.78,
        5823.39,
        1370.03,
        2452.75,
        115.56,
        3861.12,
        1470.34,
        557.12,
        609.98,
        2070.76,
    ],
    2007: [
        2509.4,
        2892.53,
        7201.88,
        3454.49,
        3193.67,
        5544.14,
        2475.45,
        3695.58,
        5571.06,
        14471.26,
        10154.25,
        3370.96,
        4476.42,
        2975.53,
        14647.53,
        8282.83,
        4143.06,
        3977.72,
        16004.61,
        2425.29,
        364.26,
        2368.53,
        4648.79,
        1124.79,
        2038.39,
        98.48,
        2986.46,
        1279.32,
        419.03,
        455.04,
        1647.55,
    ],
    2006: [
        2191.43,
        2457.08,
        6110.43,
        2755.66,
        2374.96,
        4566.83,
        1915.29,
        3365.31,
        4969.95,
        12282.89,
        8511.51,
        2711.18,
        3695.04,
        2419.74,
        12574.03,
        6724.61,
        3365.08,
        3187.05,
        13469.77,
        1878.56,
        308.62,
        1871.65,
        3775.14,
        967.54,
        1705.83,
        80.1,
        2452.44,
        1043.19,
        331.91,
        351.58,
        1459.3,
    ],
    2005: [
        2026.51,
        2135.07,
        5271.57,
        2357.04,
        1773.21,
        3869.4,
        1580.83,
        2971.68,
        4381.2,
        10524.96,
        7164.75,
        2245.9,
        3175.92,
        1917.47,
        10478.62,
        5514.14,
        2852.12,
        2612.57,
        11356.6,
        1510.68,
        240.83,
        1564,
        3067.23,
        821.16,
        1426.42,
        63.52,
        1951.36,
        838.56,
        264.61,
        281.05,
        1164.79,
    ],
    2004: [
        1853.58,
        1685.93,
        4301.73,
        1919.4,
        1248.27,
        3061.62,
        1329.68,
        2487.04,
        3892.12,
        8437.99,
        6250.38,
        1844.9,
        2770.49,
        1566.4,
        8478.69,
        4182.1,
        2320.6,
        2190.54,
        9280.73,
        1253.7,
        205.6,
        1376.91,
        2489.4,
        681.5,
        1281.63,
        52.74,
        1553.1,
        713.3,
        211.7,
        244.05,
        914.47,
    ],
    2003: [
        1487.15,
        1337.31,
        3417.56,
        1463.38,
        967.49,
        2898.89,
        1098.37,
        2084.7,
        3209.02,
        6787.11,
        5096.38,
        1535.29,
        2340.82,
        1204.33,
        6485.05,
        3310.14,
        1956.02,
        1777.74,
        7592.78,
        984.08,
        175.82,
        1135.31,
        2014.8,
        569.37,
        1047.66,
        47.64,
        1221.17,
        572.02,
        171.92,
        194.27,
        719.54,
    ],
    2002: [
        1249.99,
        1069.08,
        2911.69,
        1134.31,
        754.78,
        2609.85,
        943.49,
        1843.6,
        2622.45,
        5604.49,
        4090.48,
        1337.04,
        2036.97,
        941.77,
        5184.98,
        2768.75,
        1709.89,
        1523.5,
        6143.4,
        846.89,
        148.88,
        958.87,
        1733.38,
        481.96,
        934.88,
        32.72,
        1007.56,
        501.69,
        144.51,
        153.06,
        603.15,
    ],
}

data_ti = {
    2011: [
        12363.18,
        5219.24,
        8483.17,
        3960.87,
        5015.89,
        8158.98,
        3679.91,
        4918.09,
        11142.86,
        20842.21,
        14180.23,
        4975.96,
        6878.74,
        3921.2,
        17370.89,
        7991.72,
        7247.02,
        7539.54,
        24097.7,
        3998.33,
        1148.93,
        3623.81,
        7014.04,
        2781.29,
        3701.79,
        322.57,
        4355.81,
        1963.79,
        540.18,
        861.92,
        2245.12,
    ],
    2010: [
        10600.84,
        4238.65,
        7123.77,
        3412.38,
        4209.03,
        6849.37,
        3111.12,
        4040.55,
        9833.51,
        17131.45,
        12063.82,
        4193.69,
        5850.62,
        3121.4,
        14343.14,
        6607.89,
        6053.37,
        6369.27,
        20711.55,
        3383.11,
        953.67,
        2881.08,
        6030.41,
        2177.07,
        2892.31,
        274.82,
        3688.93,
        1536.5,
        470.88,
        702.45,
        1766.69,
    ],
    2009: [
        9179.19,
        3405.16,
        6068.31,
        2886.92,
        3696.65,
        5891.25,
        2756.26,
        3371.95,
        8930.85,
        13629.07,
        9918.78,
        3662.15,
        5048.49,
        2637.07,
        11768.18,
        5700.91,
        5127.12,
        5402.81,
        18052.59,
        2919.13,
        748.59,
        2474.44,
        5198.8,
        1885.79,
        2519.62,
        240.85,
        3143.74,
        1363.27,
        398.54,
        563.74,
        1587.72,
    ],
    2008: [
        8375.76,
        2886.65,
        5276.04,
        2759.46,
        3212.06,
        5207.72,
        2412.26,
        2905.68,
        7872.23,
        11888.53,
        8799.31,
        3234.64,
        4346.4,
        2355.86,
        10358.64,
        5099.76,
        4466.85,
        4633.67,
        16321.46,
        2529.51,
        643.47,
        2160.48,
        4561.69,
        1652.34,
        2218.81,
        218.67,
        2699.74,
        1234.21,
        355.93,
        475,
        1421.38,
    ],
    2007: [
        7236.15,
        2250.04,
        4600.72,
        2257.99,
        2467.41,
        4486.74,
        2025.44,
        2493.04,
        6821.11,
        9730.91,
        7613.46,
        2789.78,
        3770,
        1918.95,
        8620.24,
        4511.97,
        3812.34,
        3835.4,
        14076.83,
        2156.76,
        528.84,
        1825.21,
        3881.6,
        1312.94,
        1896.78,
        188.06,
        2178.2,
        1037.11,
        294.91,
        366.18,
        1246.89,
    ],
    2006: [
        5837.55,
        1902.31,
        3895.36,
        1846.18,
        1934.35,
        3798.26,
        1687.07,
        2096.35,
        5508.48,
        7914.11,
        6281.86,
        2390.29,
        3022.83,
        1614.65,
        7187.26,
        3721.44,
        3111.98,
        3229.42,
        11585.82,
        1835.12,
        433.57,
        1649.2,
        3319.62,
        989.38,
        1557.91,
        159.76,
        1806.36,
        900.16,
        249.04,
        294.78,
        1058.16,
    ],
    2005: [
        4854.33,
        1658.19,
        3340.54,
        1611.07,
        1542.26,
        3295.45,
        1413.83,
        1857.42,
        4776.2,
        6612.22,
        5360.1,
        2137.77,
        2551.41,
        1411.92,
        5924.74,
        3181.27,
        2655.94,
        2882.88,
        9772.5,
        1560.92,
        377.17,
        1440.32,
        2836.73,
        815.32,
        1374.62,
        137.24,
        1546.59,
        787.36,
        213.37,
        259.49,
        929.41,
    ],
    2004: [
        4092.27,
        1319.76,
        2805.47,
        1375.67,
        1270,
        2811.95,
        1223.64,
        1657.77,
        4097.26,
        5198.03,
        4584.22,
        1963.9,
        2206.02,
        1225.8,
        4764.7,
        2722.4,
        2292.55,
        2428.95,
        8335.3,
        1361.92,
        335.3,
        1229.62,
        2510.3,
        661.8,
        1192.53,
        123.3,
        1234.6,
        688.41,
        193.7,
        227.73,
        833.36,
    ],
    2003: [
        3435.95,
        1150.81,
        2439.68,
        1176.65,
        1000.79,
        2487.85,
        1075.48,
        1467.9,
        3404.19,
        4493.31,
        3890.79,
        1638.42,
        1949.91,
        1043.08,
        4112.43,
        2358.86,
        2003.08,
        1995.78,
        7178.94,
        1178.25,
        293.85,
        1081.35,
        2189.68,
        558.28,
        1013.76,
        96.76,
        1063.89,
        589.91,
        169.81,
        195.46,
        753.91,
    ],
    2002: [
        2982.57,
        997.47,
        2149.75,
        992.69,
        811.47,
        2258.17,
        958.88,
        1319.4,
        3038.9,
        3891.92,
        3227.99,
        1399.02,
        1765.8,
        972.73,
        3700.52,
        1978.37,
        1795.93,
        1780.79,
        6343.94,
        1074.85,
        270.96,
        956.12,
        1943.68,
        480.37,
        914.5,
        89.56,
        963.62,
        514.83,
        148.83,
        171.14,
        704.5,
    ],
}

data_estate = {
    2011: [
        12363.18,
        5219.24,
        8483.17,
        3960.87,
        5015.89,
        8158.98,
        3679.91,
        4918.09,
        11142.86,
        20842.21,
        14180.23,
        4975.96,
        6878.74,
        3921.2,
        17370.89,
        7991.72,
        7247.02,
        7539.54,
        24097.7,
        3998.33,
        1148.93,
        3623.81,
        7014.04,
        2781.29,
        3701.79,
        322.57,
        4355.81,
        1963.79,
        540.18,
        861.92,
        2245.12,
    ],
    2010: [
        10600.84,
        4238.65,
        7123.77,
        3412.38,
        4209.03,
        6849.37,
        3111.12,
        4040.55,
        9833.51,
        17131.45,
        12063.82,
        4193.69,
        5850.62,
        3121.4,
        14343.14,
        6607.89,
        6053.37,
        6369.27,
        20711.55,
        3383.11,
        953.67,
        2881.08,
        6030.41,
        2177.07,
        2892.31,
        274.82,
        3688.93,
        1536.5,
        470.88,
        702.45,
        1766.69,
    ],
    2009: [
        9179.19,
        3405.16,
        6068.31,
        2886.92,
        3696.65,
        5891.25,
        2756.26,
        3371.95,
        8930.85,
        13629.07,
        9918.78,
        3662.15,
        5048.49,
        2637.07,
        11768.18,
        5700.91,
        5127.12,
        5402.81,
        18052.59,
        2919.13,
        748.59,
        2474.44,
        5198.8,
        1885.79,
        2519.62,
        240.85,
        3143.74,
        1363.27,
        398.54,
        563.74,
        1587.72,
    ],
    2008: [
        8375.76,
        2886.65,
        5276.04,
        2759.46,
        3212.06,
        5207.72,
        2412.26,
        2905.68,
        7872.23,
        11888.53,
        8799.31,
        3234.64,
        4346.4,
        2355.86,
        10358.64,
        5099.76,
        4466.85,
        4633.67,
        16321.46,
        2529.51,
        643.47,
        2160.48,
        4561.69,
        1652.34,
        2218.81,
        218.67,
        2699.74,
        1234.21,
        355.93,
        475,
        1421.38,
    ],
    2007: [
        7236.15,
        2250.04,
        4600.72,
        2257.99,
        2467.41,
        4486.74,
        2025.44,
        2493.04,
        6821.11,
        9730.91,
        7613.46,
        2789.78,
        3770,
        1918.95,
        8620.24,
        4511.97,
        3812.34,
        3835.4,
        14076.83,
        2156.76,
        528.84,
        1825.21,
        3881.6,
        1312.94,
        1896.78,
        188.06,
        2178.2,
        1037.11,
        294.91,
        366.18,
        1246.89,
    ],
    2006: [
        5837.55,
        1902.31,
        3895.36,
        1846.18,
        1934.35,
        3798.26,
        1687.07,
        2096.35,
        5508.48,
        7914.11,
        6281.86,
        2390.29,
        3022.83,
        1614.65,
        7187.26,
        3721.44,
        3111.98,
        3229.42,
        11585.82,
        1835.12,
        433.57,
        1649.2,
        3319.62,
        989.38,
        1557.91,
        159.76,
        1806.36,
        900.16,
        249.04,
        294.78,
        1058.16,
    ],
    2005: [
        4854.33,
        1658.19,
        3340.54,
        1611.07,
        1542.26,
        3295.45,
        1413.83,
        1857.42,
        4776.2,
        6612.22,
        5360.1,
        2137.77,
        2551.41,
        1411.92,
        5924.74,
        3181.27,
        2655.94,
        2882.88,
        9772.5,
        1560.92,
        377.17,
        1440.32,
        2836.73,
        815.32,
        1374.62,
        137.24,
        1546.59,
        787.36,
        213.37,
        259.49,
        929.41,
    ],
    2004: [
        4092.27,
        1319.76,
        2805.47,
        1375.67,
        1270,
        2811.95,
        1223.64,
        1657.77,
        4097.26,
        5198.03,
        4584.22,
        1963.9,
        2206.02,
        1225.8,
        4764.7,
        2722.4,
        2292.55,
        2428.95,
        8335.3,
        1361.92,
        335.3,
        1229.62,
        2510.3,
        661.8,
        1192.53,
        123.3,
        1234.6,
        688.41,
        193.7,
        227.73,
        833.36,
    ],
    2003: [
        3435.95,
        1150.81,
        2439.68,
        1176.65,
        1000.79,
        2487.85,
        1075.48,
        1467.9,
        3404.19,
        4493.31,
        3890.79,
        1638.42,
        1949.91,
        1043.08,
        4112.43,
        2358.86,
        2003.08,
        1995.78,
        7178.94,
        1178.25,
        293.85,
        1081.35,
        2189.68,
        558.28,
        1013.76,
        96.76,
        1063.89,
        589.91,
        169.81,
        195.46,
        753.91,
    ],
    2002: [
        2982.57,
        997.47,
        2149.75,
        992.69,
        811.47,
        2258.17,
        958.88,
        1319.4,
        3038.9,
        3891.92,
        3227.99,
        1399.02,
        1765.8,
        972.73,
        3700.52,
        1978.37,
        1795.93,
        1780.79,
        6343.94,
        1074.85,
        270.96,
        956.12,
        1943.68,
        480.37,
        914.5,
        89.56,
        963.62,
        514.83,
        148.83,
        171.14,
        704.5,
    ],
}

data_financial = {
    2011: [
        12363.18,
        5219.24,
        8483.17,
        3960.87,
        5015.89,
        8158.98,
        3679.91,
        4918.09,
        11142.86,
        20842.21,
        14180.23,
        4975.96,
        6878.74,
        3921.2,
        17370.89,
        7991.72,
        7247.02,
        7539.54,
        24097.7,
        3998.33,
        1148.93,
        3623.81,
        7014.04,
        2781.29,
        3701.79,
        322.57,
        4355.81,
        1963.79,
        540.18,
        861.92,
        2245.12,
    ],
    2010: [
        10600.84,
        4238.65,
        7123.77,
        3412.38,
        4209.03,
        6849.37,
        3111.12,
        4040.55,
        9833.51,
        17131.45,
        12063.82,
        4193.69,
        5850.62,
        3121.4,
        14343.14,
        6607.89,
        6053.37,
        6369.27,
        20711.55,
        3383.11,
        953.67,
        2881.08,
        6030.41,
        2177.07,
        2892.31,
        274.82,
        3688.93,
        1536.5,
        470.88,
        702.45,
        1766.69,
    ],
    2009: [
        9179.19,
        3405.16,
        6068.31,
        2886.92,
        3696.65,
        5891.25,
        2756.26,
        3371.95,
        8930.85,
        13629.07,
        9918.78,
        3662.15,
        5048.49,
        2637.07,
        11768.18,
        5700.91,
        5127.12,
        5402.81,
        18052.59,
        2919.13,
        748.59,
        2474.44,
        5198.8,
        1885.79,
        2519.62,
        240.85,
        3143.74,
        1363.27,
        398.54,
        563.74,
        1587.72,
    ],
    2008: [
        8375.76,
        2886.65,
        5276.04,
        2759.46,
        3212.06,
        5207.72,
        2412.26,
        2905.68,
        7872.23,
        11888.53,
        8799.31,
        3234.64,
        4346.4,
        2355.86,
        10358.64,
        5099.76,
        4466.85,
        4633.67,
        16321.46,
        2529.51,
        643.47,
        2160.48,
        4561.69,
        1652.34,
        2218.81,
        218.67,
        2699.74,
        1234.21,
        355.93,
        475,
        1421.38,
    ],
    2007: [
        7236.15,
        2250.04,
        4600.72,
        2257.99,
        2467.41,
        4486.74,
        2025.44,
        2493.04,
        6821.11,
        9730.91,
        7613.46,
        2789.78,
        3770,
        1918.95,
        8620.24,
        4511.97,
        3812.34,
        3835.4,
        14076.83,
        2156.76,
        528.84,
        1825.21,
        3881.6,
        1312.94,
        1896.78,
        188.06,
        2178.2,
        1037.11,
        294.91,
        366.18,
        1246.89,
    ],
    2006: [
        5837.55,
        1902.31,
        3895.36,
        1846.18,
        1934.35,
        3798.26,
        1687.07,
        2096.35,
        5508.48,
        7914.11,
        6281.86,
        2390.29,
        3022.83,
        1614.65,
        7187.26,
        3721.44,
        3111.98,
        3229.42,
        11585.82,
        1835.12,
        433.57,
        1649.2,
        3319.62,
        989.38,
        1557.91,
        159.76,
        1806.36,
        900.16,
        249.04,
        294.78,
        1058.16,
    ],
    2005: [
        4854.33,
        1658.19,
        3340.54,
        1611.07,
        1542.26,
        3295.45,
        1413.83,
        1857.42,
        4776.2,
        6612.22,
        5360.1,
        2137.77,
        2551.41,
        1411.92,
        5924.74,
        3181.27,
        2655.94,
        2882.88,
        9772.5,
        1560.92,
        377.17,
        1440.32,
        2836.73,
        815.32,
        1374.62,
        137.24,
        1546.59,
        787.36,
        213.37,
        259.49,
        929.41,
    ],
    2004: [
        4092.27,
        1319.76,
        2805.47,
        1375.67,
        1270,
        2811.95,
        1223.64,
        1657.77,
        4097.26,
        5198.03,
        4584.22,
        1963.9,
        2206.02,
        1225.8,
        4764.7,
        2722.4,
        2292.55,
        2428.95,
        8335.3,
        1361.92,
        335.3,
        1229.62,
        2510.3,
        661.8,
        1192.53,
        123.3,
        1234.6,
        688.41,
        193.7,
        227.73,
        833.36,
    ],
    2003: [
        3435.95,
        1150.81,
        2439.68,
        1176.65,
        1000.79,
        2487.85,
        1075.48,
        1467.9,
        3404.19,
        4493.31,
        3890.79,
        1638.42,
        1949.91,
        1043.08,
        4112.43,
        2358.86,
        2003.08,
        1995.78,
        7178.94,
        1178.25,
        293.85,
        1081.35,
        2189.68,
        558.28,
        1013.76,
        96.76,
        1063.89,
        589.91,
        169.81,
        195.46,
        753.91,
    ],
    2002: [
        2982.57,
        997.47,
        2149.75,
        992.69,
        811.47,
        2258.17,
        958.88,
        1319.4,
        3038.9,
        3891.92,
        3227.99,
        1399.02,
        1765.8,
        972.73,
        3700.52,
        1978.37,
        1795.93,
        1780.79,
        6343.94,
        1074.85,
        270.96,
        956.12,
        1943.68,
        480.37,
        914.5,
        89.56,
        963.62,
        514.83,
        148.83,
        171.14,
        704.5,
    ],
}


def format_data(data: dict) -> dict:
    for year in range(2002, 2012):
        max_data, sum_data = 0, 0
        temp = data[year]
        max_data = max(temp)
        for i in range(len(temp)):
            sum_data += temp[i]
            data[year][i] = {"name": name_list[i], "value": temp[i]}
        data[str(year) + "max"] = int(max_data / 100) * 100
        data[str(year) + "sum"] = sum_data
    return data


# GDP
total_data["dataGDP"] = format_data(data=data_gdp)
# 第一产业
total_data["dataPI"] = format_data(data=data_pi)
# 第二产业
total_data["dataSI"] = format_data(data=data_si)
# 第三产业
total_data["dataTI"] = format_data(data=data_ti)
# 房地产
total_data["dataEstate"] = format_data(data=data_estate)
# 金融
total_data["dataFinancial"] = format_data(data=data_financial)


#####################################################################################
# 2002 - 2011 年的数据
def get_year_overlap_chart(year: int) -> Bar:
    bar = (
        Bar()
        .add_xaxis(xaxis_data=name_list)
        .add_yaxis(
            series_name="GDP",
            y_axis=total_data["dataGDP"][year],
            is_selected=False,  # is_selected是否选中图例
            label_opts=opts.LabelOpts(is_show=False),
        )
        .add_yaxis(
            series_name="金融",
            y_axis=total_data["dataFinancial"][year],
            is_selected=False, # is_selected是否选中图例
            label_opts=opts.LabelOpts(is_show=False),
        )
        .add_yaxis(
            series_name="房地产",
            y_axis=total_data["dataEstate"][year],
            is_selected=False, # is_selected是否选中图例
            label_opts=opts.LabelOpts(is_show=False),
        )
        .add_yaxis(
            series_name="第一产业",
            y_axis=total_data["dataPI"][year],
            label_opts=opts.LabelOpts(is_show=False),
        )
        .add_yaxis(
            series_name="第二产业",
            y_axis=total_data["dataSI"][year],
            label_opts=opts.LabelOpts(is_show=False),
        )
        .add_yaxis(
            series_name="第三产业",
            y_axis=total_data["dataTI"][year],
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title="{}全国宏观经济指标".format(year), subtitle="数据来自国家统计局"
            ),
            tooltip_opts=opts.TooltipOpts(
                is_show=True, trigger="axis", axis_pointer_type="shadow"
            ),
        )
    )
    pie = (
        Pie()
        .add(
            series_name="GDP占比",
            data_pair=[
                ["第一产业", total_data["dataPI"]["{}sum".format(year)]],
                ["第二产业", total_data["dataSI"]["{}sum".format(year)]],
                ["第三产业", total_data["dataTI"]["{}sum".format(year)]],
            ],
            center=["75%", "35%"],
            radius="28%",
        )
        .set_series_opts(tooltip_opts=opts.TooltipOpts(is_show=True, trigger="item"))
    )
    return bar.overlap(pie)


# 生成时间轴的图
timeline = Timeline(init_opts=opts.InitOpts(width="1600px", height="800px"))

for y in range(2002, 2012):
    timeline.add(get_year_overlap_chart(year=y), time_point=str(y))

# 1.0.0 版本的 add_schema 暂时没有补上 return self 所以只能这么写着
timeline.add_schema(is_auto_play=True, play_interval=1000)
# timeline.render("finance_indices_2002.html")
timeline.render_notebook()    #Jupyter Notebook直接显示

 

 通过 dict 进行配置柱形图

from pyecharts.charts import Bar
from pyecharts.faker import Faker
from pyecharts.globals import ThemeType

c = (
    Bar({"theme": ThemeType.MACARONS})
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(
        title_opts={"text": "Bar-通过 dict 进行配置", "subtext": "我也是通过 dict 进行配置的"}
    )
#     .render("bar_base_dict_config.html")
)
c.render_notebook()    #Jupyter Notebook直接显示

 区域选择组件配置项

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-Brush示例", subtitle="我是副标题"),
        brush_opts=opts.BrushOpts(),  #区域选择组件配置项
    )
#     .render("bar_with_brush.html")
)
c.render_notebook()

 区域缩放配置项

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.days_attrs)
    .add_yaxis("商家A", Faker.days_values)
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-DataZoom(slider-水平)"),
        datazoom_opts=opts.DataZoomOpts(),  #区域缩放配置项
    )
#     .render("bar_datazoom_slider.html")
)
c.render_notebook()

 好全的工具箱!

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar(init_opts=opts.InitOpts(bg_color='white'))  #初始化的背景色,长宽等在这里设置,也可以为16进制的代码,如果不设置为白色,下载下来的图片png就是透明的
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-显示 ToolBox"),
        toolbox_opts=opts.ToolboxOpts(),  #工具箱配置项
        legend_opts=opts.LegendOpts(is_show=False),  #图例配置项
    )
#     .render("bar_toolbox.html")
)
c.render_notebook()

 类似于瀑布图

from pyecharts.charts import Bar
from pyecharts import options as opts

x_data = [f"11月{str(i)}日" for i in range(1, 12)]
y_total = [0, 900, 1245, 1530, 1376, 1376, 1511, 1689, 1856, 1495, 1292]
y_in = [900, 345, 393, "-", "-", 135, 178, 286, "-", "-", "-"]
y_out = ["-", "-", "-", 108, 154, "-", "-", "-", 119, 361, 203]


bar = (
    Bar()
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="",
        y_axis=y_total,
        stack="总量",   # stack数据堆叠,同个类目轴上系列配置相同的stack值可以堆叠放置
        itemstyle_opts=opts.ItemStyleOpts(color="rgba(0,0,0,0)"), 
        #图元样式配置项,图形颜色,可以使用 RGBA,比如 'rgba(128, 128, 128, 0.5)',也可以使用十六进制格式,比如 '#ccc'
        # rgba(0,0,0,0)完全不透明的白色,也即是无色
    )
    .add_yaxis(series_name="收入", y_axis=y_in, stack="总量")
    .add_yaxis(series_name="支出", y_axis=y_out, stack="总量")
    .set_global_opts(yaxis_opts=opts.AxisOpts(type_="value"))   #坐标轴配置项
    # type_坐标轴类型。可选:
    # 'value': 数值轴,适用于连续数据。
    # 'category': 类目轴,适用于离散的类目数据,为该类型时必须通过 data 设置类目数据。
    # 'time': 时间轴,适用于连续的时序数据,与数值轴相比时间轴带有时间的格式化,在刻度计算上也有所不同,
    # 例如会根据跨度的范围来决定使用月,星期,日还是小时范围的刻度。
    # 'log' 对数轴。适用于对数数据。
#     .render("bar_waterfall_plot.html")
)
bar.render_notebook()

 柱形图与折线组合图

import pyecharts.options as opts
from pyecharts.charts import Bar, Line

"""
Gallery 使用 pyecharts 1.1.0
参考地址: https://www.echartsjs.com/examples/editor.html?c=mix-line-bar

目前无法实现的功能:

1、暂无
"""

x_data = ["1月", "2月", "3月", "4月", "5月", "6月", "7月", "8月", "9月", "10月", "11月", "12月"]

bar = (
    Bar(init_opts=opts.InitOpts(width="1600px", height="800px"))
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="蒸发量",
        y_axis=[
            2.0,
            4.9,
            7.0,
            23.2,
            25.6,
            76.7,
            135.6,
            162.2,
            32.6,
            20.0,
            6.4,
            3.3,
        ],
        label_opts=opts.LabelOpts(is_show=False),
    )
    .add_yaxis(
        series_name="降水量",
        y_axis=[
            2.6,
            5.9,
            9.0,
            26.4,
            28.7,
            70.7,
            175.6,
            182.2,
            48.7,
            18.8,
            6.0,
            2.3,
        ],
        label_opts=opts.LabelOpts(is_show=False),
    )
    .extend_axis(  #扩展 X/Y 轴
        yaxis=opts.AxisOpts(   #yaxis新增 Y 坐标轴配置项,AxisOpts坐标轴配置项
            name="温度",
            type_="value",  #'value': 数值轴,适用于连续数据
            min_=0,
            max_=25,
            interval=5, # 强制设置坐标轴分割间隔
            axislabel_opts=opts.LabelOpts(formatter="{value} °C"),# 坐标轴标签配置项      formatter回调函数,value传入的数据值
        )
    )
    .set_global_opts(
        tooltip_opts=opts.TooltipOpts(#TooltipOpts:提示框配置项
            is_show=True, trigger="axis", axis_pointer_type="cross"
            #is_show是否显示提示框组件,trigger触发类型,'axis': 坐标轴触发,主要在柱状图,折线图等会使用类目轴的图表中使用
            #axis_pointer_type指示器类型'cross':十字准星指示器。其实是种简写,表示启用两个正交的轴的 axisPointer。
        ),
        xaxis_opts=opts.AxisOpts(   #坐标轴配置项
            type_="category", #'category': 类目轴,适用于离散的类目数据,为该类型时必须通过 data 设置类目数据。
            axispointer_opts=opts.AxisPointerOpts(is_show=True, type_="shadow"), # 坐标轴指示器配置项
        ),  #is_show是否显示坐标轴指示器,type_指示器类型# 'line' 直线指示器'shadow' 阴影指示器'none' 无指示器
        yaxis_opts=opts.AxisOpts(
            name="水量",
            type_="value",
            min_=0,
            max_=250,
            interval=50,  # 强制设置坐标轴分割间隔
            axislabel_opts=opts.LabelOpts(formatter="{value} ml"), # 坐标轴标签配置项      formatter回调函数,value传入的数据值
            axistick_opts=opts.AxisTickOpts(is_show=True), # 坐标轴刻度配置项
            splitline_opts=opts.SplitLineOpts(is_show=True), # 分割线配置项
        ),
    )
)

line = (
    Line()
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="平均温度",
        yaxis_index=1,  # 使用的 y 轴的 index,在单个图表实例中存在多个 y 轴的时候有用
        y_axis=[2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2],
        label_opts=opts.LabelOpts(is_show=False),
    )
)

# bar.overlap(line).render("mixed_bar_and_line.html")
bar.overlap(line).render_notebook()

 图形组件的使用-可加水印

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode
from pyecharts.faker import Faker


c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-Graphic 组件示例"),
        graphic_opts=[  
            opts.GraphicGroup(#GraphicGroup:原生图形元素组件
                graphic_item=opts.GraphicItem(  # graphic_item图形的配置项
                    rotation=JsCode("Math.PI / 4"),# 旋转(rotation):默认值是 0。表示旋转的弧度值。正值表示逆时针旋转。
                    bounding="raw",# bounding决定此图形元素在定位时,对自身的包围盒计算方式。可选:
                    # 'all':(默认) 表示用自身以及子节点整体的经过 transform 后的包围盒进行定位。这种方式易于使整体都限制在父元素范围中。
                    # 'raw':表示仅仅用自身(不包括子节点)的没经过 tranform 的包围盒进行定位。这种方式易于内容超出父元素范围的定位方式。
                    right=110, # 描述怎么根据父元素进行定位。
                    # 父元素是指:如果是顶层元素,父元素是 echarts 图表容器。如果是 group 的子元素,父元素就是 group 元素。
                    bottom=110,
                    z=100,# z 方向的高度,决定层叠关系。
                ),
                children=[  # 子节点列表,其中项都是一个图形元素定义。
                    # 目前可以选择 GraphicText,GraphicImage,GraphicRect
                    opts.GraphicRect(  #GraphicRect:原生图形矩形配置项
                        graphic_item=opts.GraphicItem(
                            left="center", top="center", z=100
                        ),
                        graphic_shape_opts=opts.GraphicShapeOpts(width=400, height=50),  #GraphicShapeOpts图形的形状配置项
                        graphic_basicstyle_opts=opts.GraphicBasicStyleOpts(# GraphicBasicStyleOpts图形基本配置项
                            fill="rgba(0,0,0,0.3)"  #填充色
                        ),
                    ),
                    opts.GraphicText(#GraphicText:原生图形文本配置项
                        graphic_item=opts.GraphicItem(
                            left="center", top="center", z=100
                        ),
                        graphic_textstyle_opts=opts.GraphicTextStyleOpts(  # 图形文本样式的配置项
                            text="pyecharts bar chart",
                            font="bold 26px Microsoft YaHei",
                            graphic_basicstyle_opts=opts.GraphicBasicStyleOpts(
                                fill="#fff"
                            ),
                        ),
                    ),
                ],
            )
        ],
    )
#     .render("bar_graphic_component.html")
)
c.render_notebook()

 堆叠部分数据

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values(), stack="stack1")
    .add_yaxis("商家B", Faker.values(), stack="stack1")
    .add_yaxis("商家C", Faker.values())
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-堆叠数据(部分)"))
#     .render("bar_stack1.html")
)
c.render_notebook()

 x轴y轴命名

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-XY 轴名称"),
        yaxis_opts=opts.AxisOpts(name="我是 Y 轴"),
        xaxis_opts=opts.AxisOpts(name="我是 X 轴"),
    )
#     .render("bar_xyaxis_name.html")
)
c.render_notebook()

 添加自定义背景图

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode
from pyecharts.faker import Faker

c = (
    Bar(
        init_opts=opts.InitOpts(
            bg_color={"type": "pattern", "image": JsCode("img"), "repeat": "no-repeat"}
#         "type": "pattern" 表示我们用图片作背景,
#             "image": JsCode("img") 表示我们用 JavaScript 代码来设置这个背景图,
#             "repeat": "no-repeat" 表示图片不重复。

        )
    )
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(
        title_opts=opts.TitleOpts(
            title="Bar-背景图基本示例",
            subtitle="我是副标题",
            title_textstyle_opts=opts.TextStyleOpts(color="white"),  #TextStyleOpts:文字样式配置项,文字颜色
        )
    )
)
#             而 add_js_funcs 方法就是执行相关的 JavaScript 代码,
#             这里的 JavaScript 代码也很简单,就设置一个名为 img 的变量,
#             指定一下路径。也可以用文件路径
c.add_js_funcs(
    """
    var img = new Image(); img.src = 'https://kr.shanghai-jiuxin.com/file/bizhi/20220927/4gzitkl1lyv.jpg';
    """
)
c.render_notebook()

 柱状图动画延迟&分割线

import pyecharts.options as opts
from pyecharts.charts import Bar

"""
Gallery 使用 pyecharts 1.1.0
参考地址: https://www.echartsjs.com/examples/editor.html?c=bar-animation-delay

目前无法实现的功能:

1、动画延迟效果暂时没有加入到代码中
"""

category = ["类目{}".format(i) for i in range(0, 100)]
red_bar = [
    0,
    -8.901463875624668,
    -17.025413764148556,
    -24.038196249566663,
    -29.66504684804471,
    -33.699527649688676,
    -36.00971978255796,
    -36.541005056170455,
    -35.31542466107655,
    -32.427752866005996,
    -28.038563739693934,
    -22.364693082297347,
    -15.667600860943732,
    -8.240217424060843,
    -0.3929067389459173,
    7.560799717904647,
    15.318054209871054,
    22.599523033552096,
    29.16065418543528,
    34.800927952557615,
    39.37074152590451,
    42.77569739999406,
    44.97819140223978,
    45.99632376477021,
    45.900279829731865,
    44.806440199911805,
    42.86957840395034,
    40.2735832137877,
    37.22119936652441,
    33.92331243435557,
    30.588309963978517,
    27.412031986865767,
    24.56878097935778,
    22.203796820272576,
    20.427519715115604,
    19.311867685884827,
    18.888649906111855,
    19.150128087782186,
    20.051630602288828,
    21.516023200879346,
    23.439750867099516,
    25.700091656548704,
    28.163208735293757,
    30.692553648214542,
    33.1571635093161,
    35.439407573791215,
    37.44177367693234,
    39.09234039030659,
    40.34865356244595,
    41.19981246258526,
    41.66666666666667,
    41.80012531240646,
    41.67768039516203,
    41.39834040182826,
    41.07625507973403,
    40.833382300579814,
    40.79160029175877,
    41.06470032034727,
    41.75070457358366,
    42.924940903672564,
    44.63427081999565,
    46.89281122872821,
    49.679416561286956,
    52.93709961387478,
    56.574470884754874,
    60.46917221906629,
    64.47317623531558,
    68.41972346252496,
    72.1315793340836,
    75.43021771943799,
    78.14548044723074,
    80.12522637371026,
    81.24447108408411,
    81.41353029256493,
    80.58471628367427,
    78.75719600392792,
    75.97969924353211,
    72.35086229880064,
    68.01710226438443,
    63.16803467673056,
    58.029567166714706,
    52.854918421647554,
    47.91391949819902,
    43.48104807503482,
    39.82272085822884,
    37.18442111754884,
    35.778264289169215,
    35.77160292258658,
    37.27724241244461,
    40.345781666728996,
    44.96051012913295,
    51.035187614675685,
    58.41491053964701,
    66.8801325453253,
    76.15376513468516,
    85.91114110149952,
    95.79248672571518,
    105.41742429574506,
    114.40092042993717,
    122.37001313784816,
]
blue_bar = [
    -50,
    -47.18992898088751,
    -42.54426104547181,
    -36.290773900754886,
    -28.71517529663627,
    -20.146937097399626,
    -10.94374119697364,
    -1.4752538113770308,
    7.893046603320797,
    16.81528588241657,
    24.979206795219028,
    32.11821023962515,
    38.02096119056733,
    42.53821720798438,
    45.58667093073836,
    47.14973738101559,
    47.275355710354944,
    46.07100702178889,
    43.6962693226927,
    40.35333240268025,
    36.275975292575026,
    31.71756381888028,
    26.938653692729076,
    22.194784893913152,
    17.725026430574392,
    13.741778696752679,
    10.422266555457615,
    7.902063853319403,
    6.270884006107842,
    5.570756810898967,
    5.796594266992678,
    6.899033489892203,
    8.7893381290192,
    11.346045936704996,
    14.42297348773613,
    17.858132851517098,
    21.483081596548438,
    25.132218074866262,
    28.651548555679597,
    31.906490373810854,
    34.788333671419466,
    37.21906041552118,
    39.154309232933485,
    40.58437366457342,
    41.5332247510366,
    42.05565130942339,
    42.23270781895,
    42.165745792772285,
    41.969375711588256,
    41.76375960543808,
    41.66666666666667,
    41.7857343479728,
    42.21136481847887,
    43.01065209435119,
    44.22268037417866,
    45.855461823273586,
    47.88469584957917,
    50.25443606443524,
    52.879650371477126,
    55.650558977584225,
    58.43853958732492,
    61.10330341815434,
    63.500974294013034,
    65.49264961151306,
    66.95298925309743,
    67.77836838841961,
    67.89414332224722,
    67.26061575374229,
    65.87733853082335,
    63.785482681031894,
    61.068077697490004,
    57.84804048526095,
    54.284018163297375,
    50.564180830851214,
    46.89820707575337,
    43.50780217852947,
    40.616171775045245,
    38.4369379107128,
    37.16302649485318,
    36.95607267600796,
    37.93688225696513,
    40.17745279877072,
    43.694998595987045,
    48.44834150353593,
    54.33692802801367,
    61.20261650152743,
    68.83425165632042,
    76.97491319735354,
    85.33159602026458,
    93.58695857541488,
    101.4126683297632,
    108.48378461530217,
    114.49355390682695,
    119.16795429637915,
    122.27931702317058,
    123.65837448506679,
    123.20413594805603,
    120.89107255501017,
    116.7731992576505,
    110.98476877890735,
]

c = (
    Bar(init_opts=opts.InitOpts(width="1600px", height="800px"))
    .add_xaxis(xaxis_data=category)
    .add_yaxis(
        series_name="bar", y_axis=red_bar, label_opts=opts.LabelOpts(is_show=False)
    )
    .add_yaxis(
        series_name="bar2",
        y_axis=blue_bar,
        label_opts=opts.LabelOpts(is_show=False),
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="柱状图动画延迟"),
        xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=False)),  # 分割线配置项,x轴不显示
        yaxis_opts=opts.AxisOpts(
            axistick_opts=opts.AxisTickOpts(is_show=True),# 坐标轴刻度配置项,y轴显示,就是凸起来那个小点
            splitline_opts=opts.SplitLineOpts(is_show=True),  #y轴有分割线
        ),
    )
#     .render("bar_chart_display_delay.html")
)
c.render_notebook()

 可以垂直滑动的数据区域

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.days_attrs)
    .add_yaxis("商家A", Faker.days_values, color=Faker.rand_color())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-DataZoom(slider-垂直)"),
        datazoom_opts=opts.DataZoomOpts(orient="vertical"), #DataZoomOpts:区域缩放配置项, 布局方式是横还是竖
    )
#     .render("bar_datazoom_slider_vertical.html")
)
c.render_notebook()

 直方图(颜色区分)

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


x = Faker.dogs + Faker.animal
xlen = len(x)
y = []
for idx, item in enumerate(x):
    if idx <= xlen / 2:  #一半一个颜色
        y.append(
            opts.BarItem(  #BarItem:柱状图数据项
                name=item,  # 数据项名称
                value=(idx + 1) * 10, # 单个数据项的数值
                itemstyle_opts=opts.ItemStyleOpts(color="#749f83"),  # 图元样式配置项
            )
        )
    else:
        y.append(
            opts.BarItem(
                name=item,
                value=(xlen + 1 - idx) * 10,
                itemstyle_opts=opts.ItemStyleOpts(color="#d48265"),
            )
        )

c = (
    Bar()
    .add_xaxis(x)
    .add_yaxis("series0", y, category_gap=0, color=Faker.rand_color())  # category_gap同一系列的柱间距离,默认为类目间距的 20%,可设固定值
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-直方图(颜色区分)"))
#     .render("bar_histogram_color.html")
)
c.render_notebook()

 y轴格式化单位

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-Y 轴 formatter"),
        yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value} /月")),
    )
#     .render("bar_yaxis_formatter.html")
)
c.render_notebook()

 标记点最大-最小-平均值

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-MarkPoint(指定类型)"))
    .set_series_opts(
        label_opts=opts.LabelOpts(is_show=False),
        markpoint_opts=opts.MarkPointOpts(# 标记点配置项
            data=[ # 标记点数据
                opts.MarkPointItem(type_="max", name="最大值"),#MarkPointItem:标记点数据项
                opts.MarkPointItem(type_="min", name="最小值"),
                opts.MarkPointItem(type_="average", name="平均值"),
            ]
        ),
    )
#     .render("bar_markpoint_type.html")
)
c.render_notebook()

 3个y轴

import pyecharts.options as opts
from pyecharts.charts import Bar, Line

"""
Gallery 使用 pyecharts 1.0.0
参考地址: https://www.echartsjs.com/examples/editor.html?c=multiple-y-axis

目前无法实现的功能:

1、暂无
"""

colors = ["#5793f3", "#d14a61", "#675bba"]
x_data = ["1月", "2月", "3月", "4月", "5月", "6月", "7月", "8月", "9月", "10月", "11月", "12月"]
legend_list = ["蒸发量", "降水量", "平均温度"]
evaporation_capacity = [
    2.0,
    4.9,
    7.0,
    23.2,
    25.6,
    76.7,
    135.6,
    162.2,
    32.6,
    20.0,
    6.4,
    3.3,
]
rainfall_capacity = [
    2.6,
    5.9,
    9.0,
    26.4,
    28.7,
    70.7,
    175.6,
    182.2,
    48.7,
    18.8,
    6.0,
    2.3,
]
average_temperature = [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2]

bar = (
    Bar(init_opts=opts.InitOpts(width="1680px", height="800px"))
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="蒸发量",
        y_axis=evaporation_capacity,
        yaxis_index=0,   #多轴时才会有索引,默认轴索引都为0
        color=colors[1],
    )
    .add_yaxis(
        series_name="降水量", y_axis=rainfall_capacity, yaxis_index=1, color=colors[0]
    )
    .extend_axis(
        yaxis=opts.AxisOpts(
            name="蒸发量",
            type_="value",
            min_=0,
            max_=250,
            position="right",  #在右
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(color=colors[1])
            ),
            axislabel_opts=opts.LabelOpts(formatter="{value} ml"),
        )
    )
    .extend_axis(
        yaxis=opts.AxisOpts(
            type_="value",
            name="温度",
            min_=0,
            max_=25,
            position="left", #在左
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(color=colors[2])
            ),
            axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
            splitline_opts=opts.SplitLineOpts(
                is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)  # opacity图形透明度,支持从 0 到 1 的数字,为 0 时不绘制该图形。
            ),
        )
    )
    .set_global_opts(
        yaxis_opts=opts.AxisOpts(
            type_="value",
            name="降水量",
            min_=0,
            max_=250,
            position="right",
            offset=80,# Y 轴相对于默认位置的偏移,在相同的 position 上有多个 Y 轴的时候有用。
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(color=colors[0])
            ),
            axislabel_opts=opts.LabelOpts(formatter="{value} ml"),
        ),
        tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
        #TooltipOpts:提示框配置项
        # 'axis': 坐标轴触发,主要在柱状图,折线图等会使用类目轴的图表中使用。
        # 'cross':十字准星指示器。其实是种简写,表示启用两个正交的轴的 axisPointer。
    )
)

line = (
    Line()
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="平均温度", y_axis=average_temperature, yaxis_index=2, color=colors[2]
    )
)

# bar.overlap(line).render("multiple_y_axes.html")
bar.overlap(line).render_notebook()

 自定义柱状图颜色

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode
from pyecharts.faker import Faker


color_function = """
        function (params) {
            if (params.value > 0 && params.value < 50) {
                return 'red';
            } else if (params.value > 50 && params.value < 100) {
                return 'blue';
            }
            return 'green';
        }
        """
c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis(
        "商家A",
        Faker.values(),
        itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_function)), #ItemStyleOpts:图元样式配置项
    )
    .add_yaxis(
        "商家B",
        Faker.values(),
        itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_function)),
    )
    .add_yaxis(
        "商家C",
        Faker.values(),
        itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_function)),
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-自定义柱状颜色"))
#     .render("bar_custom_bar_color.html")
)
c.render_notebook()

 不同系列柱间距离

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values(), gap="0%") 
    # 不同系列的柱间距离,为百分比(如 '30%',表示柱子宽度的 30%)。
    # 如果想要两个系列的柱子重叠,可以设置 gap 为 '-100%'。这在用柱子做背景的时候有用。
    .add_yaxis("商家B", Faker.values(), gap="0%")
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-不同系列柱间距离"))
#     .render("bar_different_series_gap.html")
)
c.render_notebook()

  标记线最大-最小-平均值

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-MarkLine(指定类型)"))
    .set_series_opts(
        label_opts=opts.LabelOpts(is_show=False),
        markline_opts=opts.MarkLineOpts( #MarkLineItem:标记线数据项
            data=[
                opts.MarkLineItem(type_="min", name="最小值"),
                opts.MarkLineItem(type_="max", name="最大值"),
                opts.MarkLineItem(type_="average", name="平均值"),
            ]
        ),
    )
)
c.render_notebook()

 渐变圆柱

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values(), category_gap="60%")# category_gap同一系列的柱间距离,默认为类目间距的 20%,可设固定值
    .set_series_opts(
        itemstyle_opts={  # 图元样式配置项
            "normal": {
                "color": JsCode(
                    """new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                offset: 0,
                color: 'rgba(0, 244, 255, 1)'
            }, {
                offset: 1,
                color: 'rgba(0, 77, 167, 1)'
            }], false)"""
                ),
                "barBorderRadius": [30, 30, 30, 30],
                "shadowColor": "rgb(0, 160, 221)",
            }
        }
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-渐变圆柱"))
#     .render("bar_border_radius.html")
)
c.render_notebook()

 单系列柱间距离

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values(), category_gap="80%")
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-单系列柱间距离"))
#     .render("bar_same_series_gap.html")
)
c.render_notebook()

 鼠标滚轮选择缩放区域

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.days_attrs)
    .add_yaxis("商家A", Faker.days_values, color=Faker.rand_color())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-DataZoom(inside)"),
        datazoom_opts=opts.DataZoomOpts(type_="inside"),#DataZoomOpts:区域缩放配置项
        # type_组件类型,可选 "slider", "inside"  ,slider是鼠标左右或者上下选择区域,inside是鼠标滚轮放大缩小
    )
#     .render("bar_datazoom_inside.html")
)
c.render_notebook()

 默认取消显示某 Series

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values(), is_selected=False)
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-默认取消显示某 Series"))
#     .render("bar_is_selected.html")
)
c.render_notebook()

 翻转 XY 轴

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .reversal_axis() #翻转 XY 轴数据
    .set_series_opts(label_opts=opts.LabelOpts(position="right"))
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-翻转 XY 轴"))
#     .render("bar_reversal_axis.html")
)
c.render_notebook()

 自定义标记多个点

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

x, y = Faker.choose(), Faker.values()
c = (
    Bar()
    .add_xaxis(x)
    .add_yaxis(
        "商家A",
        y,
        markpoint_opts=opts.MarkPointOpts(
            data=[opts.MarkPointItem(name="自定义标记点", coord=[x[2], y[2]], value=y[2]),
            opts.MarkPointItem(name="自定义标记点2", coord=[x[5], y[5]], value=y[5])]
        ),  #MarkPointItem:标记点数据项
            # coord标注的坐标。坐标格式视系列的坐标系而定,可以是直角坐标系上的 x, y,
            # 也可以是极坐标系上的 radius, angle。例如 [121, 2323]、['aa', 998]。
            # value标注值,可以不设。
    )
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-MarkPoint(自定义)"))
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
#     .render("bar_markpoint_custom.html")
)
c.render_notebook()

 动画配置基本示例

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


c = (
    Bar(
        init_opts=opts.InitOpts(
            animation_opts=opts.AnimationOpts(   # animation_opts画图动画初始化配置
                animation_delay=1000, animation_easing="elasticOut"
                 # animation_delay初始动画的延迟,默认值为 0
                # animation_easing# 初始动画的缓动效果
            )
        )
    )
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-动画配置基本示例", subtitle="我是副标题"))
#     .render("bar_base_with_animation.html")
)
c.render_notebook()

 直方图

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values(), category_gap=0, color=Faker.rand_color())# category_gap同一系列的柱间距离,默认为类目间距的 20%,可设固定值
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-直方图"))
#     .render("bar_histogram.html")
)
c.render_notebook()

 自定义多条标记线

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-MarkLine(自定义)"))
    .set_series_opts(
        label_opts=opts.LabelOpts(is_show=False),
        markline_opts=opts.MarkLineOpts(
            data=[opts.MarkLineItem(y=50, name="yAxis=50"),opts.MarkLineItem(y=30, name="yAxis=30"),]
        ),
    )
#     .render("bar_markline_custom.html")
)
c.render_notebook()

 基本图表示例

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"))
#     .render("bar_base.html")
)
c.render_notebook()

 水平滑动&鼠标滚轮缩放

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.days_attrs)
    .add_yaxis("商家A", Faker.days_values, color=Faker.rand_color())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-DataZoom(slider+inside)"),
        datazoom_opts=[opts.DataZoomOpts(), opts.DataZoomOpts(type_="inside")],
    )   #DataZoomOpts默认slider
#     .render("bar_datazoom_both.html")
)
c.render_notebook()

 

转载请注明出处或者链接地址:https://www.qianduange.cn//article/10383.html
评论
发布的文章

npmjs官网(查询依赖包)

2024-06-07 00:06:56

npx使用及原理

2024-06-07 00:06:36

npm 包管理工具

2024-06-07 00:06:33

vue 思极地图开发

2024-06-07 00:06:28

大家推荐的文章
会员中心 联系我 留言建议 回顶部
复制成功!