这篇文章将跳过yolov8的环境搭建,超详细||深度学习环境搭建记录cuda+anaconda+pytorch+pycharm-CSDN博客
第一步
将标注的文件放到y8项目的datasets文件夹下,jpg和json放同一目录下
json文件格式:
第二步
在数据集中新建labelme2yolo.py文件,代码
# -*- coding: utf-8 -*-
import os
import numpy as np
import json
from glob import glob
import cv2
import shutil
import yaml
from sklearn.model_selection import train_test_split
from tqdm import tqdm
from PIL import Image
'''
统一图像格式
'''
def change_image_format(label_path, suffix='.jpg'):
"""
统一当前文件夹下所有图像的格式,如'.jpg'
:param suffix: 图像文件后缀
:param label_path:当前文件路径
:return:
"""
externs = ['png', 'jpg', 'JPEG', 'BMP', 'bmp']
files = list()
# 获取尾缀在ecterns中的所有图像
for extern in externs:
files.extend(glob(label_path + "\\*." + extern))
# 遍历所有图像,转换图像格式
for index,file in enumerate(tqdm(files)):
name = ''.join(file.split('.')[:-1])
file_suffix = file.split('.')[-1]
if file_suffix != suffix.split('.')[-1]:
# 重命名为jpg
new_name = name + suffix
# 读取图像
image = Image.open(file)
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
# 重新存图为jpg格式
cv2.imwrite(new_name, image)
# 删除旧图像
os.remove(file)
'''
读取所有json文件,获取所有的类别
'''
def get_all_class(file_list, label_path):
"""
从json文件中获取当前数据的所有类别
:param file_list:当前路径下的所有文件名
:param label_path:当前文件路径
:return:
"""
# 初始化类别列表
classes = list()
# 遍历所有json,读取shape中的label值内容,添加到classes
for filename in tqdm(file_list):
json_path = os.path.join(label_path, filename + '.json')
json_file = json.load(open(json_path, "r", encoding="utf-8"))
for item in json_file["shapes"]:
label_class = item['label']
if label_class not in classes:
classes.append(label_class)
print('read file done')
return classes
'''
划分训练集、验证机、测试集
'''
def split_dataset(label_path, test_size=0.3, isUseTest=False, useNumpyShuffle=False):
"""
将文件分为训练集,测试集和验证集
:param useNumpyShuffle: 使用numpy方法分割数据集
:param test_size: 分割测试集或验证集的比例
:param isUseTest: 是否使用测试集,默认为False
:param label_path:当前文件路径
:return:
"""
# 获取所有json
files = glob(label_path + "\\*.json")
files = [i.replace("\\", "/").split("/")[-1].split(".json")[0] for i in files]
if useNumpyShuffle:
file_length = len(files)
index = np.arange(file_length)
np.random.seed(32)
np.random.shuffle(index) # 随机划分
test_files = None
# 是否有测试集
if isUseTest:
trainval_files, test_files = np.array(files)[index[:int(file_length * (1 - test_size))]], np.array(files)[
index[int(file_length * (1 - test_size)):]]
else:
trainval_files = files
# 划分训练集和测试集
train_files, val_files = np.array(trainval_files)[index[:int(len(trainval_files) * (1 - test_size))]], \
np.array(trainval_files)[index[int(len(trainval_files) * (1 - test_size)):]]
else:
test_files = None
if isUseTest:
trainval_files, test_files = train_test_split(files, test_size=test_size, random_state=55)
else:
trainval_files = files
train_files, val_files = train_test_split(trainval_files, test_size=test_size, random_state=55)
return train_files, val_files, test_files, files
'''
生成yolov5的训练、验证、测试集的文件夹
'''
def create_save_file(ROOT_DIR):
print('step6:生成yolov5的训练、验证、测试集的文件夹')
# 生成训练集
train_image = os.path.join(ROOT_DIR, 'images','train')
if not os.path.exists(train_image):
os.makedirs(train_image)
train_label = os.path.join(ROOT_DIR, 'labels','train')
if not os.path.exists(train_label):
os.makedirs(train_label)
# 生成验证集
val_image = os.path.join(ROOT_DIR, 'images', 'val')
if not os.path.exists(val_image):
os.makedirs(val_image)
val_label = os.path.join(ROOT_DIR, 'labels', 'val')
if not os.path.exists(val_label):
os.makedirs(val_label)
# 生成测试集
test_image = os.path.join(ROOT_DIR, 'images', 'test')
if not os.path.exists(test_image):
os.makedirs(test_image)
test_label = os.path.join(ROOT_DIR, 'labels', 'test')
if not os.path.exists(test_label):
os.makedirs(test_label)
return train_image, train_label, val_image, val_label, test_image, test_label
'''
转换,根据图像大小,返回box框的中点和高宽信息
'''
def convert(size, box):
# 宽
dw = 1. / (size[0])
# 高
dh = 1. / (size[1])
x = (box[0] + box[1]) / 2.0 - 1
y = (box[2] + box[3]) / 2.0 - 1
# 宽
w = box[1] - box[0]
# 高
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
'''
移动图像和标注文件到指定的训练集、验证集和测试集中
'''
def push_into_file(file, images, labels, ROOT_DIR, suffix='.jpg'):
"""
最终生成在当前文件夹下的所有文件按image和label分别存在到训练集/验证集/测试集路径的文件夹下
:param file: 文件名列表
:param images: 存放images的路径
:param labels: 存放labels的路径
:param label_path: 当前文件路径
:param suffix: 图像文件后缀
:return:
"""
# 遍历所有文件
for filename in tqdm(file):
# 图像文件
image_file = os.path.join(ROOT_DIR, filename + suffix)
# 标注文件
label_file = os.path.join(ROOT_DIR, filename + '.txt')
# yolov5存放图像文件夹
if not os.path.exists(os.path.join(images, filename + suffix)):
try:
shutil.move(image_file, images)
except OSError:
pass
# yolov5存放标注文件夹
if not os.path.exists(os.path.join(labels, filename + suffix)):
try:
shutil.move(label_file, labels)
except OSError:
pass
'''
'''
def json2txt(classes, txt_Name='allfiles', ROOT_DIR="", suffix='.jpg'):
"""
将json文件转化为txt文件,并将json文件存放到指定文件夹
:param classes: 类别名
:param txt_Name:txt文件,用来存放所有文件的路径
:param label_path:当前文件路径
:param suffix:图像文件后缀
:return:
"""
store_json = os.path.join(ROOT_DIR, 'json')
if not os.path.exists(store_json):
os.makedirs(store_json)
_, _, _, files = split_dataset(ROOT_DIR)
if not os.path.exists(os.path.join(ROOT_DIR, 'tmp')):
os.makedirs(os.path.join(ROOT_DIR, 'tmp'))
list_file = open(os.path.join(ROOT_DIR,'tmp/%s.txt'% txt_Name) , 'w')
for json_file_ in tqdm(files):
# json路径
json_filename = os.path.join(ROOT_DIR, json_file_ + ".json")
# 图像路径
imagePath = os.path.join(ROOT_DIR, json_file_ + suffix)
# 写入图像文件夹路径
list_file.write('%s\n' % imagePath)
# 转换后txt标签文件夹路径
out_file = open('%s/%s.txt' % (ROOT_DIR, json_file_), 'w')
# 加载标签json文件
json_file = json.load(open(json_filename, "r", encoding="utf-8"))
'''
核心:标签转换(json转txt)
'''
if os.path.exists(imagePath):
height, width, channels = cv2.imread(imagePath).shape
for multi in json_file["shapes"]:
if len(multi["points"][0]) == 0:
out_file.write('')
continue
points = np.array(multi["points"])
xmin = min(points[:, 0]) if min(points[:, 0]) > 0 else 0
xmax = max(points[:, 0]) if max(points[:, 0]) > 0 else 0
ymin = min(points[:, 1]) if min(points[:, 1]) > 0 else 0
ymax = max(points[:, 1]) if max(points[:, 1]) > 0 else 0
label = multi["label"]
if xmax <= xmin:
pass
elif ymax <= ymin:
pass
else:
cls_id = classes.index(label)
b = (float(xmin), float(xmax), float(ymin), float(ymax))
bb = convert((width, height), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
# print(json_filename, xmin, ymin, xmax, ymax, cls_id)
if not os.path.exists(os.path.join(store_json, json_file_ + '.json')):
try:
shutil.move(json_filename, store_json)
except OSError:
pass
'''
创建yaml文件
'''
def create_yaml(classes, ROOT_DIR, isUseTest=False,dataYamlName=""):
print('step5:创建yolov5训练所需的yaml文件')
classes_dict = {}
for index, item in enumerate(classes):
classes_dict[index] = item
if not isUseTest:
desired_caps = {
'path': ROOT_DIR,
'train': 'images/train',
'val': 'images/val',
'names': classes_dict
}
else:
desired_caps = {
'path': ROOT_DIR,
'train': 'images/train',
'val': 'images/val',
'test': 'images/test',
'names': classes_dict
}
yamlpath = os.path.join(ROOT_DIR, dataYamlName + ".yaml")
# 写入到yaml文件
with open(yamlpath, "w+", encoding="utf-8") as f:
for key, val in desired_caps.items():
yaml.dump({key: val}, f, default_flow_style=False)
# 首先确保当前文件夹下的所有图片统一后缀,如.jpg,如果为其他后缀,将suffix改为对应的后缀,如.png
def ChangeToYoloDet(ROOT_DIR="", suffix='.bmp',classes="", test_size=0.1, isUseTest=False,useNumpyShuffle=False,auto_genClasses = False,dataYamlName=""):
"""
生成最终标准格式的文件
:param test_size: 分割测试集或验证集的比例
:param label_path:当前文件路径
:param suffix: 文件后缀名
:param isUseTest: 是否使用测试集
:return:
"""
# step1:统一图像格式
change_image_format(ROOT_DIR)
# step2:根据json文件划分训练集、验证集、测试集
train_files, val_files, test_file, files = split_dataset(ROOT_DIR, test_size=test_size, isUseTest=isUseTest)
# step3:根据json文件,获取所有类别
classes = classes
# 是否自动从数据集中获取类别数
if auto_genClasses:
classes = get_all_class(files, ROOT_DIR)
'''
step4:(***核心***)将json文件转化为txt文件,并将json文件存放到指定文件夹
'''
json2txt(classes, txt_Name='allfiles', ROOT_DIR=ROOT_DIR, suffix=suffix)
# step5:创建yolov5训练所需的yaml文件
create_yaml(classes, ROOT_DIR, isUseTest=isUseTest,dataYamlName=dataYamlName)
# step6:生成yolov5的训练、验证、测试集的文件夹
train_image_dir, train_label_dir, val_image_dir, val_label_dir, test_image_dir, test_label_dir = create_save_file(ROOT_DIR)
# step7:将所有图像和标注文件,移动到对应的训练集、验证集、测试集
# 将文件移动到训练集文件中
push_into_file(train_files, train_image_dir, train_label_dir,ROOT_DIR=ROOT_DIR, suffix=suffix)
# 将文件移动到验证集文件夹中
push_into_file(val_files, val_image_dir, val_label_dir,ROOT_DIR=ROOT_DIR, suffix=suffix)
# 如果测试集存在,则将文件移动到测试集文件中
if test_file is not None:
push_into_file(test_file, test_image_dir, test_label_dir, ROOT_DIR=ROOT_DIR, suffix=suffix)
print('create dataset done')
if __name__ == "__main__":
'''
1.ROOT_DIR:图像和json标签的路径
2.suffix:统一图像尾缀
3.classes=['dog', 'cat'], # 输入你标注的列表里的名称(注意区分大小写),用于自定义类别名称和id对应
4.test_size:测试集和验证集所占比例
5.isUseTest:是否启用测试集
6.useNumpyShuffle:是否随机打乱
7.auto_genClasses:是否自动根据json标签生成类别列表
8.dataYamlName:数据集yaml文件名称
'''
ChangeToYoloDet(
ROOT_DIR = r'D:/yolov8/ultralytics-main/mydata-example', # 注意数据集路径不要含中文
suffix='.jpg', # 确定图像尾缀,用于统一图像尾缀
classes=['cow'], # 输入你标注的列表里的名称(注意区分大小写)
test_size=0.1, # 测试集大小占比
isUseTest=False, # 是否启用测试集
useNumpyShuffle=False, # 是否乱序
auto_genClasses = False, # 是否根据数据集自动生成类别id
dataYamlName= "cow_data" # 数据集yaml文件名称
)
第三步 设置文件路径
1.设置数据集路径(含有图片和json文件)
2.设置标注标签信息的类别
3.设置数据集yaml文件名称,运行代码后会在数据集文件夹下生成yaml文件
4.运行代码会自动在数据集下创建images、json、labels、tmp文件夹,并会创建yaml文件,文件结构:
images文件夹中的train存储训练用图片,val存验证用图片;labels文件夹下train存储训练用图片标注文件txt,val存储验证用图片标注文件txt。
5.生成的yaml文件
path:数据集文件路径
train:训练集图片路径
val:验证机图片路径
names:标签类别
第四步 转换的标注文件样式
0 :标签类别